Maladaptation in wild populations of the generalist plant pathogen Pseudomonas syringae.
Ontology highlight
ABSTRACT: Multihost pathogens occur widely on both natural and agriculturally managed hosts. Despite the importance of such generalists, evolutionary studies of host-pathogen interactions have largely focused on tightly coupled interactions between species pairs. We characterized resistance in a collection of Arabidopsis thaliana hosts, including 24 accessions collected from the Midwest USA and 24 from around the world, and patterns of virulence in a collection of Pseudomonas syringae strains, including 24 strains collected from wild Midwest populations of A. thaliana (residents) and 18 from an array of cultivated species (nonresidents). All of the nonresident strains and half of the resident strains elicited a resistance response on one or more A. thaliana accessions. The resident strains that failed to elicit any resistance response possessed an alternative type III secretion system (T3SS) that is unable to deliver effectors into plant host cells; as a result, these seemingly nonpathogenic strains are incapable of engaging in gene for gene interactions with A. thaliana. The remaining resident strains triggered greater resistance compared to nonresident strains, consistent with maladaptation of the resident bacterial population. We weigh the plausibility of two explanations: general maladaptation of pathogen strains and a more novel hypothesis whereby community level epidemiological dynamics result in adaptive dynamics favoring ephemeral hosts like A. thaliana.
SUBMITTER: Kniskern JM
PROVIDER: S-EPMC3053089 | biostudies-literature | 2011 Mar
REPOSITORIES: biostudies-literature
ACCESS DATA