Fertilization in C. elegans requires an intact C-terminal RING finger in sperm protein SPE-42.
Ontology highlight
ABSTRACT: BACKGROUND: The C. elegans sperm protein SPE-42, a membrane protein of unknown structure and molecular function, is required for fertilization. Sperm from worms with spe-42 mutations appear normal but are unable to fertilize eggs. Sequence analysis revealed the presence of 8 conserved cysteine residues in the C-terminal cytoplasmic domain of this protein suggesting these residues form a zinc-coordinating RING finger structure. RESULTS: We made an in silico structural model of the SPE-42 RING finger domain based on primary sequence analysis and previously reported RING structures. To test the model, we created spe-42 transgenes coding for mutations in each of the 8 cysteine residues predicted to coordinate Zn++ ions in the RING finger motif. Transgenes were crossed into a spe-42 null background and protein function was measured by counting progeny. We found that all 8 cysteines are required for protein function. We also showed that sequence differences between the C-terminal 29 and 30 amino acids in C. elegans and C. briggsae SPE-42 following the RING finger domain are not responsible for the failure of the C. briggsae SPE-42 homolog to rescue C. elegans spe-42 mutants. CONCLUSIONS: The results suggest that a bona fide RING domain is present at the C-terminus of the SPE-42 protein and that this motif is required for sperm-egg interactions during C. elegans fertilization. Our structural model of the RING domain provides a starting point for further structure-function analysis of this critical region of the protein. The C-terminal domain swap experiment suggests that the incompatibility between the C. elegans and C. briggsae SPE-42 proteins is caused by small amino acid differences outside the C-terminal domain.
SUBMITTER: Wilson LD
PROVIDER: S-EPMC3053230 | biostudies-literature | 2011
REPOSITORIES: biostudies-literature
ACCESS DATA