Project description:The concept of type 2 diabetes remission is evolving rapidly, and gaining wide public and professional interest, following demonstration that with substantial intentional weight loss almost nine in ten people with type 2 diabetes can reduce their HbA1c level below the diagnostic criterion (48 mmol/mol [6.5%]) without glucose-lowering medications, and improve all features of the metabolic syndrome. Pursuing nomoglycaemia with older drugs was dangerous because of the risk of side effects and hypoglycaemia, so the conventional treatment target was an HbA1c concentration of 53 mmol/mol (7%), meaning that diabetes was still present and allowing disease progression. Newer agents may achieve a normal HbA1c safely and, by analogy with treatments that send cancers or inflammatory diseases into remission, this might also be considered remission. However, although modern glucagon-like peptide-1 receptor agonists and related medications are highly effective for weight loss and glycaemic improvement, and generally safe, many people do not want to take drugs indefinitely, and their cost means that they are not available across much of the world. Therefore, there are strong reasons to explore and research dietary approaches for the treatment of type 2 diabetes. All interventions that achieve sustained weight loss of >10-15 kg improve HbA1c, potentially resulting in remission if sufficient beta cell capacity can be preserved or restored, which occurs with loss of the ectopic fat in liver and pancreas that is found with type 2 diabetes. Remission is most likely with type 2 diabetes of short duration, lower HbA1c and a low requirement for glucose-lowering medications. Relapse is likely with weight regain and among those with a poor beta cell reserve. On current evidence, effective weight management should be provided to all people with type 2 diabetes as soon as possible after diagnosis (or even earlier, at the stage of prediabetes, defined in Europe, Australasia, Canada [and most of the world] as ≥42 and <48 mmol/mol [≥6.0 and <6.5%], and in the USA as HbA1c ≥39 and <48 mmol/mol [≥5.7 and <6.5%]). Raising awareness among people with type 2 diabetes and their healthcare providers that remission is possible will enable earlier intervention. Weight loss of >10 kg and remission lasting 1-2 years may also delay vascular complications, although more evidence is needed. The greatest challenge for research is to improve long-term weight loss maintenance, defining cost-effective approaches tailored to the preferences and needs of people living with type 2 diabetes.
Project description:BackgroundThe Vitaceae (grape) is an economically important family of angiosperms whose phylogenetic placement is currently unresolved. Recent phylogenetic analyses based on one to several genes have suggested several alternative placements of this family, including sister to Caryophyllales, asterids, Saxifragales, Dilleniaceae or to rest of rosids, though support for these different results has been weak. There has been a recent interest in using complete chloroplast genome sequences for resolving phylogenetic relationships among angiosperms. These studies have clarified relationships among several major lineages but they have also emphasized the importance of taxon sampling and the effects of different phylogenetic methods for obtaining accurate phylogenies. We sequenced the complete chloroplast genome of Vitis vinifera and used these data to assess relationships among 27 angiosperms, including nine taxa of rosids.ResultsThe Vitis vinifera chloroplast genome is 160,928 bp in length, including a pair of inverted repeats of 26,358 bp that are separated by small and large single copy regions of 19,065 bp and 89,147 bp, respectively. The gene content and order of Vitis is identical to many other unrearranged angiosperm chloroplast genomes, including tobacco. Phylogenetic analyses using maximum parsimony and maximum likelihood were performed on DNA sequences of 61 protein-coding genes for two datasets with 28 or 29 taxa, including eight or nine taxa from four of the seven currently recognized major clades of rosids. Parsimony and likelihood phylogenies of both data sets provide strong support for the placement of Vitaceae as sister to the remaining rosids. However, the position of the Myrtales and support for the monophyly of the eurosid I clade differs between the two data sets and the two methods of analysis. In parsimony analyses, the inclusion of Gossypium is necessary to obtain trees that support the monophyly of the eurosid I clade. However, maximum likelihood analyses place Cucumis as sister to the Myrtales and therefore do not support the monophyly of the eurosid I clade.ConclusionPhylogenies based on DNA sequences from complete chloroplast genome sequences provide strong support for the position of the Vitaceae as the earliest diverging lineage of rosids. Our phylogenetic analyses support recent assertions that inadequate taxon sampling and incorrect model specification for concatenated multi-gene data sets can mislead phylogenetic inferences when using whole chloroplast genomes for phylogeny reconstruction.
Project description:Phylogenetic profiling is a well-established approach for predicting gene function based on patterns of gene presence and absence across species. Much of the recent developments have focused on methodological improvements, but relatively little is known about the effect of input data size on the quality of predictions. In this work, we ask: how many genomes and functional annotations need to be considered for phylogenetic profiling to be effective? Phylogenetic profiling generally benefits from an increased amount of input data. However, by decomposing this improvement in predictive accuracy in terms of the contribution of additional genomes and of additional annotations, we observed diminishing returns in adding more than ? 100 genomes, whereas increasing the number of annotations remained strongly beneficial throughout. We also observed that maximising phylogenetic diversity within a clade of interest improves predictive accuracy, but the effect is small compared to changes in the number of genomes under comparison. Finally, we show that these findings are supported in light of the Open World Assumption, which posits that functional annotation databases are inherently incomplete. All the tools and data used in this work are available for reuse from http://lab.dessimoz.org/14_phylprof. Scripts used to analyse the data are available on request from the authors.
Project description:The relationship between fluid intelligence and working memory is of fundamental importance to understanding how capacity-limited structures such as working memory interact with inference abilities to determine intelligent behavior. Recent evidence has suggested that the relationship between a fluid abilities test, Raven's Progressive Matrices, and working memory capacity (WMC) may be invariant across difficulty levels of the Raven's items. We show that this invariance can only be observed if the overall correlation between Raven's and WMC is low. Simulations of Raven's performance revealed that as the overall correlation between Raven's and WMC increases, the item-wise point bi-serial correlations involving WMC are no longer constant but increase considerably with item difficulty. The simulation results were confirmed by two studies that used a composite measure of WMC, which yielded a higher correlation between WMC and Raven's than reported in previous studies. As expected, with the higher overall correlation, there was a significant positive relationship between Raven's item difficulty and the extent of the item-wise correlation with WMC.
Project description:Algorithms have begun to encroach on tasks traditionally reserved for human judgment and are increasingly capable of performing well in novel, difficult tasks. At the same time, social influence, through social media, online reviews, or personal networks, is one of the most potent forces affecting individual decision-making. In three preregistered online experiments, we found that people rely more on algorithmic advice relative to social influence as tasks become more difficult. All three experiments focused on an intellective task with a correct answer and found that subjects relied more on algorithmic advice as difficulty increased. This effect persisted even after controlling for the quality of the advice, the numeracy and accuracy of the subjects, and whether subjects were exposed to only one source of advice, or both sources. Subjects also tended to more strongly disregard inaccurate advice labeled as algorithmic compared to equally inaccurate advice labeled as coming from a crowd of peers.
Project description:Numerous studies covering some aspects of SARS-CoV-2 data analyses are being published on a daily basis, including a regularly updated phylogeny on nextstrain.org. Here, we review the difficulties of inferring reliable phylogenies by example of a data snapshot comprising a quality-filtered subset of 8,736 out of all 16,453 virus sequences available on May 5, 2020 from gisaid.org. We find that it is difficult to infer a reliable phylogeny on these data due to the large number of sequences in conjunction with the low number of mutations. We further find that rooting the inferred phylogeny with some degree of confidence either via the bat and pangolin outgroups or by applying novel computational methods on the ingroup phylogeny does not appear to be credible. Finally, an automatic classification of the current sequences into subclasses using the mPTP tool for molecular species delimitation is also, as might be expected, not possible, as the sequences are too closely related. We conclude that, although the application of phylogenetic methods to disentangle the evolution and spread of COVID-19 provides some insight, results of phylogenetic analyses, in particular those conducted under the default settings of current phylogenetic inference tools, as well as downstream analyses on the inferred phylogenies, should be considered and interpreted with extreme caution.
Project description:The Antarctic psychrophilic green alga Chlamy-domonas sp. UWO 241 is an emerging model for studying microbial adaptation to polar environments. However, little is known about its evolutionary history and its phylogenetic relationship with other chlamydomonadalean algae is equivocal. Here, we attempt to clarify the phylogenetic position of UWO 241, specifically with respect to Chlamydomonas rau-densis SAG 49.72. Contrary to a previous report, we show that UWO 241 is a distinct species from SAG 49.72. Our phylogenetic analyses of nuclear and plastid DNA sequences reveal that UWO 241 represents a unique lineage within the Moewusinia clade (sensu Nakada) of the Chlamydomonadales (Chlorophyceae, Chlorophyta), closely affiliated to the marine species Chlamydomonas parkeae SAG 24.89.
Project description:Systemic juvenile idiopathic arthritis (sJIA) has long been recognized as unique among childhood arthritides, because of its distinctive clinical and epidemiological features, including an association with macrophage activation syndrome. Here, we summarize research into sJIA pathogenesis. The triggers of disease are unknown, although infections are suspects. Once initiated, sJIA seems to be driven by innate proinflammatory cytokines. Endogenous Toll-like receptor ligands, including S100 proteins, probably synergize with cytokines to perpetuate inflammation. These and other findings support the hypothesis that sJIA is an autoinflammatory condition. Indeed, IL-1 is implicated as a pivotal cytokine, but the source of excess IL-1 activity remains obscure and the role of IL-1 in chronic arthritis is less clear. Another hypothesis is that a form of hemophagocytic lymphohistiocytosis underlies sJIA, with varying degrees of its expression across the spectrum of disease. Alternatively, sJIA with MAS might be a genetically distinct subtype. Yet another hypothesis proposes that inadequate downregulation of immune activation is central to sJIA, supporting evidence for which includes 'alternative activation' of monocyte and macrophages and possible deficiencies in IL-10 and T regulatory cells. Some altered immune phenotypes persist during clinically inactive disease, which suggests that this stage might represent compensated inflammation. Despite much progress being made, many questions remain, providing fertile ground for future research.