Structure and sequence analysis of Yersinia YadA and Moraxella UspAs reveal a novel class of adhesins.
Ontology highlight
ABSTRACT: The non-fimbrial adhesins, YadA of enteropathogenic Yersinia species, and UspA1 and UspA2 of Moraxella catarrhalis, are established pathogenicity factors. In electron micrographs, both surface proteins appear as distinct 'lollipop'-shaped structures forming a novel type of surface projection on the outer membranes. These structures, amino acid sequence analysis of these molecules and yadA gene manipulation suggest a tripartite organization: an N-terminal oval head domain is followed by a putative coiled-coil rod and terminated by a C-terminal membrane anchor domain. In YadA, the head domain is involved in autoagglutination and binding to host cells and collagen. Analysis of the coiled-coil segment of YadA revealed unusual pentadecad repeats with a periodicity of 3.75, which differs significantly from the 3.5 periodicity found in the Moraxella UspAs and other canonical coiled coils. These findings predict that the surface projections are formed by oligomers containing right- (Yersinia) or left-handed (Moraxella) coiled coils. Strikingly, sequence comparison revealed that related proteins are found in many proteobacteria, both human pathogenic and environmental species, suggesting a common role in adaptation to specific ecological niches.
SUBMITTER: Hoiczyk E
PROVIDER: S-EPMC305836 | biostudies-literature | 2000 Nov
REPOSITORIES: biostudies-literature
ACCESS DATA