Activity-dependent changes in the firing properties of neocortical fast-spiking interneurons in the absence of large changes in gene expression.
Ontology highlight
ABSTRACT: The diverse cell types that comprise neocortical circuits each have characteristic integrative and firing properties that are specialized to perform specific functions within the network. Parvalbumin-positive fast-spiking (FS) interneurons are a particularly specialized cortical cell-type that controls the dynamics of ongoing activity and prevents runaway excitation by virtue of remarkably high firing rates, a feature that is permitted by narrow action potentials and the absence of spike-frequency adaptation. Although several neuronal intrinsic membrane properties undergo activity-dependent plasticity, the role of network activity in shaping and maintaining specialized, cell-type-specific firing properties is unknown. We tested whether the specialized firing properties of mature FS interneurons are sensitive to activity perturbations by inactivating a portion of motor cortex in vivo for 48 h and measuring resulting plasticity of FS intrinsic and firing properties with whole-cell recording in acute slices. Many of the characteristic properties of FS interneurons, including nonadapting high-frequency spiking and narrow action potentials, were profoundly affected by activity deprivation both at an age just after maturation of FS firing properties and also a week after their maturation. Using microarray screening, we determined that although normal maturation of FS electrophysiological specializations is accompanied by large-scale transcriptional changes, the effects of deprivation on the same specializations involve more modest transcriptional changes, and may instead be primarily mediated by post-transcriptional mechanisms.
SUBMITTER: Miller MN
PROVIDER: S-EPMC3059083 | biostudies-literature | 2011 Jan
REPOSITORIES: biostudies-literature
ACCESS DATA