Unknown

Dataset Information

0

Differential regulation of BACE1 expression by oxidative and nitrosative signals.


ABSTRACT:

Background

It is well established that both cerebral hypoperfusion/stroke and type 2 diabetes are risk factors for Alzheimer's disease (AD). Recently, the molecular link between ischemia/hypoxia and amyloid precursor protein (APP) processing has begun to be established. However, the role of the key common denominator, namely nitric oxide (NO), in AD is largely unknown. In this study, we investigated redox regulation of BACE1, the rate-limiting enzyme responsible for the ?-cleavage of APP to A? peptides.

Results

Herein, we studied events such as S-nitrosylation, a covalent modification of cysteine residues by NO, and H2O2-mediated oxidation. We found that NO and H2O2 differentially modulate BACE1 expression and enzymatic activity: NO at low concentrations (<100 nM) suppresses BACE1 transcription as well as its enzymatic activity while at higher levels (0.1-100 ?M) NO induces S-nitrosylation of BACE1 which inactivates the enzyme without altering its expression. Moreover, the suppressive effect on BACE1 transcription is mediated by the NO/cGMP-PKG signaling, likely through activated PGC-1?. H2O2 (1-10 ?M) induces BACE1 expression via transcriptional activation, resulting in increased enzymatic activity. The differential effects of NO and H2O2 on BACE1 expression and activity are also reflected in their opposing effects on A? generation in cultured neurons in a dose-dependent manner. Furthermore, we found that BACE1 is highly S-nitrosylated in normal aging brains while S-nitrosylation is markedly reduced in AD brains.

Conclusion

This study demonstrates for the first time that BACE1 is highly modified by NO via multiple mechanisms: low and high levels of NO suppress BACE1 via transcriptional and post translational regulation, in contrast with the upregulation of BACE1 by H2O2-mediated oxidation. These novel NO-mediated regulatory mechanisms likely protect BACE1 from being further oxidized by excessive oxidative stress, as from H2O2 and peroxynitrite which are known to upregulate BACE1 and activate the enzyme, resulting in excessive cleavage of APP and A? generation; they likely represent the crucial house-keeping mechanism for BACE1 expression/activation under physiological conditions.

SUBMITTER: Kwak YD 

PROVIDER: S-EPMC3059281 | biostudies-literature | 2011 Mar

REPOSITORIES: biostudies-literature

altmetric image

Publications

Differential regulation of BACE1 expression by oxidative and nitrosative signals.

Kwak Young-Don YD   Wang Ruishan R   Li Jing Jing JJ   Zhang Yun-Wu YW   Xu Huaxi H   Liao Francesca-Fang FF  

Molecular neurodegeneration 20110303


<h4>Background</h4>It is well established that both cerebral hypoperfusion/stroke and type 2 diabetes are risk factors for Alzheimer's disease (AD). Recently, the molecular link between ischemia/hypoxia and amyloid precursor protein (APP) processing has begun to be established. However, the role of the key common denominator, namely nitric oxide (NO), in AD is largely unknown. In this study, we investigated redox regulation of BACE1, the rate-limiting enzyme responsible for the β-cleavage of APP  ...[more]

Similar Datasets

| S-EPMC4706557 | biostudies-literature
| S-EPMC7554713 | biostudies-literature
| S-EPMC6556356 | biostudies-literature
| S-EPMC3869934 | biostudies-literature
| S-EPMC6351829 | biostudies-literature
| S-EPMC4815678 | biostudies-literature
| S-EPMC4299202 | biostudies-literature
| S-EPMC6342322 | biostudies-literature
| S-EPMC8532805 | biostudies-literature
| S-EPMC2740736 | biostudies-literature