Unknown

Dataset Information

0

AaCAT1 of the yellow fever mosquito, Aedes aegypti: a novel histidine-specific amino acid transporter from the SLC7 family.


ABSTRACT: Insect yolk protein precursor gene expression is regulated by nutritional and endocrine signals. A surge of amino acids in the hemolymph of blood-fed female mosquitoes activates a nutrient signaling system in the fat bodies, which subsequently derepresses yolk protein precursor genes and makes them responsive to activation by steroid hormones. Orphan transporters of the SLC7 family were identified as essential upstream components of the nutrient signaling system in the fat body of fruit flies and the yellow fever mosquito, Aedes aegypti. However, the transport function of these proteins was unknown. We report expression and functional characterization of AaCAT1, cloned from the fat body of A. aegypti. Expression of AaCAT1 transcript and protein undergoes dynamic changes during postembryonic development of the mosquito. Transcript expression was especially high in the third and fourth larval stages; however, the AaCAT1 protein was detected only in pupa and adult stages. Functional expression and analysis of AaCAT1 in Xenopus oocytes revealed that it acts as a sodium-independent cationic amino acid transporter, with unique selectivity to L-histidine at neutral pH (K(0.5)(L-His) = 0.34 ± 0.07 mM, pH 7.2). Acidification to pH 6.2 dramatically increases AaCAT1-specific His(+)-induced current. RNAi-mediated silencing of AaCAT1 reduces egg yield of subsequent ovipositions. Our data show that AaCAT1 has notable differences in its transport mechanism when compared with related mammalian cationic amino acid transporters. It may execute histidine-specific transport and signaling in mosquito tissues.

SUBMITTER: Hansen IA 

PROVIDER: S-EPMC3060531 | biostudies-literature | 2011 Mar

REPOSITORIES: biostudies-literature

altmetric image

Publications

AaCAT1 of the yellow fever mosquito, Aedes aegypti: a novel histidine-specific amino acid transporter from the SLC7 family.

Hansen Immo A IA   Boudko Dmitri Y DY   Shiao Shin-Hong SH   Voronov Dmitri A DA   Meleshkevitch Ella A EA   Drake Lisa L LL   Aguirre Sarah E SE   Fox Jeffrey M JM   Attardo Geoffrey M GM   Raikhel Alexander S AS  

The Journal of biological chemistry 20110124 12


Insect yolk protein precursor gene expression is regulated by nutritional and endocrine signals. A surge of amino acids in the hemolymph of blood-fed female mosquitoes activates a nutrient signaling system in the fat bodies, which subsequently derepresses yolk protein precursor genes and makes them responsive to activation by steroid hormones. Orphan transporters of the SLC7 family were identified as essential upstream components of the nutrient signaling system in the fat body of fruit flies an  ...[more]

Similar Datasets

2018-08-23 | GSE113256 | GEO
| S-EPMC3014591 | biostudies-literature
| S-EPMC1154223 | biostudies-other
| S-EPMC6746732 | biostudies-literature
| S-EPMC5560810 | biostudies-other
| S-EPMC3139008 | biostudies-literature
| S-EPMC2851739 | biostudies-literature
| S-EPMC19908 | biostudies-literature
| S-EPMC7575095 | biostudies-literature
| S-EPMC8954748 | biostudies-literature