Unknown

Dataset Information

0

Improved doubly robust estimation when data are monotonely coarsened, with application to longitudinal studies with dropout.


ABSTRACT: A routine challenge is that of making inference on parameters in a statistical model of interest from longitudinal data subject to dropout, which are a special case of the more general setting of monotonely coarsened data. Considerable recent attention has focused on doubly robust (DR) estimators, which in this context involve positing models for both the missingness (more generally, coarsening) mechanism and aspects of the distribution of the full data, that have the appealing property of yielding consistent inferences if only one of these models is correctly specified. DR estimators have been criticized for potentially disastrous performance when both of these models are even only mildly misspecified. We propose a DR estimator applicable in general monotone coarsening problems that achieves comparable or improved performance relative to existing DR methods, which we demonstrate via simulation studies and by application to data from an AIDS clinical trial.

SUBMITTER: Tsiatis AA 

PROVIDER: S-EPMC3061242 | biostudies-literature | 2011 Jun

REPOSITORIES: biostudies-literature

altmetric image

Publications

Improved doubly robust estimation when data are monotonely coarsened, with application to longitudinal studies with dropout.

Tsiatis Anastasios A AA   Davidian Marie M   Cao Weihua W  

Biometrics 20100819 2


A routine challenge is that of making inference on parameters in a statistical model of interest from longitudinal data subject to dropout, which are a special case of the more general setting of monotonely coarsened data. Considerable recent attention has focused on doubly robust (DR) estimators, which in this context involve positing models for both the missingness (more generally, coarsening) mechanism and aspects of the distribution of the full data, that have the appealing property of yield  ...[more]

Similar Datasets

| S-EPMC4263224 | biostudies-literature
| S-EPMC8132732 | biostudies-literature
| S-EPMC5749433 | biostudies-literature
| S-EPMC4061274 | biostudies-literature
| S-EPMC10119900 | biostudies-literature
| S-EPMC3070495 | biostudies-literature
| S-EPMC4122332 | biostudies-other
| S-EPMC4315264 | biostudies-literature
| S-EPMC7984348 | biostudies-literature
| S-EPMC9042061 | biostudies-literature