Quorum sensing and c-di-GMP-dependent alterations in gene transcripts and virulence-associated phenotypes in a clinical isolate of Aeromonas hydrophila.
Ontology highlight
ABSTRACT: Recently, we demonstrated that the LuxS-based quorum sensing (QS) system (AI-2) negatively regulated the virulence of a diarrheal isolate SSU of Aeromonas hydrophila, while the ahyRI-based (AI-1) N-acyl-homoserine lactone system was a positive regulator of bacterial virulence. Thus, these QS systems had opposing effects on modulating biofilm formation and bacterial motility in vitro models and in vivo virulence in a speticemic mouse model of infection. In this study, we linked these two QS systems with the bacterial second messenger cyclic diguanosine monophosphate (c-di-GMP) in the regulation of virulence in A. hydrophila SSU. To accomplish this, we examined the effect of overproducing a protein with GGDEF domain, which increases c-di-GMP levels in bacteria, on the phenotype and transcriptional profiling of genes involved in biofilm formation and bacterial motility in wild-type (WT) versus its QS null mutants. We provided evidence that c-di-GMP overproduction dramatically enhanced biofilm formation and reduced motility of the WT A. hydrophila SSU, which was equitable with that of the ?luxS mutant. On the contrary, the ?ahyRI mutant exhibited only a marginal increase in the biofilm formation with no effect on motility when c-di-GMP was overproduced. Overall, our data indicated that c-di-GMP overproduction modulated transcriptional levels of genes involved in biofilm formation and motility phenotype in A. hydrophila SSU in a QS-dependent manner, involving both AI-1 and AI-2 systems.
SUBMITTER: Kozlova EV
PROVIDER: S-EPMC3065947 | biostudies-literature | 2011 May
REPOSITORIES: biostudies-literature
ACCESS DATA