Unknown

Dataset Information

0

An experimentally validated genome-scale metabolic reconstruction of Klebsiella pneumoniae MGH 78578, iYL1228.


ABSTRACT: Klebsiella pneumoniae is a Gram-negative bacterium of the family Enterobacteriaceae that possesses diverse metabolic capabilities: many strains are leading causes of hospital-acquired infections that are often refractory to multiple antibiotics, yet other strains are metabolically engineered and used for production of commercially valuable chemicals. To study its metabolism, we constructed a genome-scale metabolic model (iYL1228) for strain MGH 78578, experimentally determined its biomass composition, experimentally determined its ability to grow on a broad range of carbon, nitrogen, phosphorus and sulfur sources, and assessed the ability of the model to accurately simulate growth versus no growth on these substrates. The model contains 1,228 genes encoding 1,188 enzymes that catalyze 1,970 reactions and accurately simulates growth on 84% of the substrates tested. Furthermore, quantitative comparison of growth rates between the model and experimental data for nine of the substrates also showed good agreement. The genome-scale metabolic reconstruction for K. pneumoniae presented here thus provides an experimentally validated in silico platform for further studies of this important industrial and biomedical organism.

SUBMITTER: Liao YC 

PROVIDER: S-EPMC3067640 | biostudies-literature | 2011 Apr

REPOSITORIES: biostudies-literature

altmetric image

Publications

An experimentally validated genome-scale metabolic reconstruction of Klebsiella pneumoniae MGH 78578, iYL1228.

Liao Yu-Chieh YC   Huang Tzu-Wen TW   Chen Feng-Chi FC   Charusanti Pep P   Hong Jay S J JS   Chang Hwan-You HY   Tsai Shih-Feng SF   Palsson Bernhard O BO   Hsiung Chao A CA  

Journal of bacteriology 20110204 7


Klebsiella pneumoniae is a Gram-negative bacterium of the family Enterobacteriaceae that possesses diverse metabolic capabilities: many strains are leading causes of hospital-acquired infections that are often refractory to multiple antibiotics, yet other strains are metabolically engineered and used for production of commercially valuable chemicals. To study its metabolism, we constructed a genome-scale metabolic model (iYL1228) for strain MGH 78578, experimentally determined its biomass compos  ...[more]

Similar Datasets

2012-12-31 | GSE35926 | GEO
2012-12-31 | E-GEOD-35926 | biostudies-arrayexpress
2014-02-02 | GSE52536 | GEO
2014-08-22 | GSE60588 | GEO
2013-12-31 | GSE40011 | GEO
| S-EPMC3536570 | biostudies-literature
2014-02-02 | E-GEOD-52536 | biostudies-arrayexpress
2014-02-02 | GSE52537 | GEO
| S-EPMC3269727 | biostudies-literature
| S-EPMC8561657 | biostudies-literature