The UNC5C netrin receptor regulates dorsal guidance of mouse hindbrain axons.
Ontology highlight
ABSTRACT: The cerebellum receives its input from multiple precerebellar nuclei located in the brainstem and sends processed information to other brain structures via the deep cerebellar neurons. Guidance molecules that regulate the complex migrations of precerebellar neurons and the initial guidance of their leading processes have been identified. However, the molecules necessary for dorsal guidance of precerebellar axons to the developing cerebellum or for guidance of decussating axons of the deep nuclei are not known. To determine whether Unc5c plays a role in the dorsal guidance of precerebellar and deep cerebellar axons, we studied axonal trajectories of these neurons in Unc5c(-/-) mice. Our results show that Unc5c is expressed broadly in the precerebellar and deep cerebellar neurons. Unc5c deletion disrupted long-range dorsal guidance of inferior olivary and pontine axons after crossing the midline. In addition, dorsal guidance of the axons from the medial deep cerebellar and external cuneate neurons was affected in Unc5c(-/-) mice, as were anterior migrations of pontine neurons. Coincident with the guidance defects of their axons, degeneration of neurons in the external cuneate nucleus and subdivisions of the inferior olivary nucleus was observed in Unc5c(-/-) mice. Lastly, transgenic expression of Unc5c in deep neurons and pontine neurons by the Atoh1 promoter rescued defects of the medial deep cerebellar and pontine axons observed in Unc5c(-/-) embryos, demonstrating that Unc5c acts cell autonomously in the guidance of these axons. Our results suggest that Unc5c plays a broad role in dorsal guidance of axons in the developing hindbrain.
SUBMITTER: Kim D
PROVIDER: S-EPMC3073835 | biostudies-literature | 2011 Feb
REPOSITORIES: biostudies-literature
ACCESS DATA