Unknown

Dataset Information

0

Constitutive Mad1 targeting to kinetochores uncouples checkpoint signalling from chromosome biorientation.


ABSTRACT: Accurate chromosome segregation depends on biorientation, whereby sister chromatids attach to microtubules from opposite spindle poles. The spindle-assembly checkpoint is a surveillance mechanism in eukaryotes that inhibits anaphase until all chromosomes have bioriented. In present models, the recruitment of the spindle-assembly checkpoint protein Mad2, through Mad1, to non-bioriented kinetochores is needed to stop cell-cycle progression. However, it is unknown whether Mad1-Mad2 targeting to kinetochores is sufficient to block anaphase. Furthermore, it is unclear whether regulators of biorientation (for example, Aurora kinases) have checkpoint functions downstream of Mad1-Mad2 recruitment or whether they act upstream to quench the primary error signal. Here, we engineered a Mad1 construct that localizes to bioriented kinetochores. We show that the kinetochore localization of Mad1 is sufficient for a metaphase arrest that depends on Mad1-Mad2 binding. By uncoupling the checkpoint from its primary error signal, we show that Aurora, Mps1 and BubR1 kinases, but not Polo-like kinase, are needed to maintain checkpoint arrest when Mad1 is present on kinetochores. Together, our data suggest a model in which the biorientation errors, which recruit Mad1-Mad2 to kinetochores, may be signalled not only through Mad2 template dynamics, but also through the activity of widely conserved kinases, to ensure the fidelity of cell division.

SUBMITTER: Maldonado M 

PROVIDER: S-EPMC3076698 | biostudies-literature | 2011 Apr

REPOSITORIES: biostudies-literature

altmetric image

Publications

Constitutive Mad1 targeting to kinetochores uncouples checkpoint signalling from chromosome biorientation.

Maldonado Maria M   Kapoor Tarun M TM  

Nature cell biology 20110313 4


Accurate chromosome segregation depends on biorientation, whereby sister chromatids attach to microtubules from opposite spindle poles. The spindle-assembly checkpoint is a surveillance mechanism in eukaryotes that inhibits anaphase until all chromosomes have bioriented. In present models, the recruitment of the spindle-assembly checkpoint protein Mad2, through Mad1, to non-bioriented kinetochores is needed to stop cell-cycle progression. However, it is unknown whether Mad1-Mad2 targeting to kin  ...[more]

Similar Datasets

| S-EPMC3989695 | biostudies-literature
| S-EPMC4169584 | biostudies-literature
| S-EPMC3941058 | biostudies-literature
| S-EPMC6446853 | biostudies-literature
| S-EPMC3998811 | biostudies-literature
| S-EPMC8930511 | biostudies-literature
| S-EPMC2080909 | biostudies-literature
| S-EPMC5472792 | biostudies-literature
| S-EPMC2725729 | biostudies-literature
| S-EPMC6640339 | biostudies-literature