Unknown

Dataset Information

0

Aquaporin water channel AgAQP1 in the malaria vector mosquito Anopheles gambiae during blood feeding and humidity adaptation.


ABSTRACT: Altered patterns of malaria endemicity reflect, in part, changes in feeding behavior and climate adaptation of mosquito vectors. Aquaporin (AQP) water channels are found throughout nature and confer high-capacity water flow through cell membranes. The genome of the major malaria vector mosquito Anopheles gambiae contains at least seven putative AQP sequences. Anticipating that transmembrane water movements are important during the life cycle of A. gambiae, we identified and characterized the A. gambiae aquaporin 1 (AgAQP1) protein that is homologous to AQPs known in humans, Drosophila, and sap-sucking insects. When expressed in Xenopus laevis oocytes, AgAQP1 transports water but not glycerol. Similar to mammalian AQPs, water permeation of AgAQP1 is inhibited by HgCl(2) and tetraethylammonium, with Tyr185 conferring tetraethylammonium sensitivity. AgAQP1 is more highly expressed in adult female A. gambiae mosquitoes than in males. Expression is high in gut, ovaries, and Malpighian tubules where immunofluorescence microscopy reveals that AgAQP1 resides in stellate cells but not principal cells. AgAQP1 expression is up-regulated in fat body and ovary by blood feeding but not by sugar feeding, and it is reduced by exposure to a dehydrating environment (42% relative humidity). RNA interference reduces AgAQP1 mRNA and protein levels. In a desiccating environment (<20% relative humidity), mosquitoes with reduced AgAQP1 protein survive significantly longer than controls. These studies support a role for AgAQP1 in water homeostasis during blood feeding and humidity adaptation of A. gambiae, a major mosquito vector of human malaria in sub-Saharan Africa.

SUBMITTER: Liu K 

PROVIDER: S-EPMC3076861 | biostudies-literature | 2011 Apr

REPOSITORIES: biostudies-literature

altmetric image

Publications

Aquaporin water channel AgAQP1 in the malaria vector mosquito Anopheles gambiae during blood feeding and humidity adaptation.

Liu Kun K   Tsujimoto Hitoshi H   Cha Sung-Jae SJ   Agre Peter P   Rasgon Jason L JL  

Proceedings of the National Academy of Sciences of the United States of America 20110328 15


Altered patterns of malaria endemicity reflect, in part, changes in feeding behavior and climate adaptation of mosquito vectors. Aquaporin (AQP) water channels are found throughout nature and confer high-capacity water flow through cell membranes. The genome of the major malaria vector mosquito Anopheles gambiae contains at least seven putative AQP sequences. Anticipating that transmembrane water movements are important during the life cycle of A. gambiae, we identified and characterized the A.  ...[more]

Similar Datasets

| S-EPMC3774814 | biostudies-literature
| S-EPMC2930861 | biostudies-literature
| S-EPMC4216128 | biostudies-literature
| S-EPMC1508153 | biostudies-literature
| S-EPMC2840125 | biostudies-literature
| S-EPMC1569196 | biostudies-other
| S-EPMC546002 | biostudies-literature
| S-EPMC3113458 | biostudies-literature
| S-EPMC64743 | biostudies-literature
| S-EPMC122242 | biostudies-literature