Responses to historical climate change identify contemporary threats to diversity in Dodecatheon.
Ontology highlight
ABSTRACT: Anthropogenic climate change may threaten many species with extinction. However, species at risk today survived global climate change in recent geological history. Describing how habitat tracking and adaptation allowed species to survive warming since the end of the Pleistocene can indicate the relative importance of dispersal and natural selection during climate change. By taking this historical perspective, we can identify how contemporary climate change could interfere with these mechanisms and threaten the most vulnerable species. We focused on a group of closely related plant species in the genus Dodecatheon (Primulaceae) in eastern North America. Two rare species (Dodecatheon amethystinum and Dodecatheon frenchii) that are endemic to patchy cool cliffs may be glacial relicts whose ranges constricted following the last glacial maximum. Alternatively, these species may be extreme ecotypes of a single widespread species (Dodecatheon meadia) that quickly adapted to microclimatic differences among habitats. We test support for these alternative scenarios by combining ecophysiological and population genetic data at a regional scale. An important ecophysiological trait distinguishes rare species from D. meadia, but only a few northern populations of D. amethystinum are genetically distinctive. These relict populations indicate that habitat tracking did occur with historical climate change. However, relatively stronger evidence for isolation by distance and admixture suggests that local adaptation and genetic introgression have been at least as important. The complex response of Dodecatheon to historical climate change suggests that contemporary conservation efforts should accommodate evolutionary processes, in some cases by restoring genetic connectivity between ecologically differentiated populations.
SUBMITTER: Oberle B
PROVIDER: S-EPMC3078354 | biostudies-literature | 2011 Apr
REPOSITORIES: biostudies-literature
ACCESS DATA