Group II metabotropic glutamate receptor agonist ameliorates MK801-induced dysfunction of NMDA receptors via the Akt/GSK-3β pathway in adult rat prefrontal cortex.
Ontology highlight
ABSTRACT: Pharmacological intervention targeting mGluRs has emerged as a potential treatment for schizophrenia, whereas the mechanisms involved remain elusive. We explored the antipsychotic effects of an mGluR2/3 agonist in the MK-801 model of schizophrenia in the rat prefrontal cortex. We found that the mGluR2/3 agonist LY379268 effectively recovered the disrupted expression of NMDA receptors induced by MK-801 administration. This effect was attributable to the direct regulatory action of LY379268 on NMDA receptors via activation of the Akt/GSK-3β signaling pathway. As occurs with the antipsychotic drug clozapine, acute treatment with LY379268 significantly increased the expression and phosphorylation of NMDA receptors, as well as Akt and GSK-3β. Physiologically, LY379268 significantly enhanced NMDA-induced current in prefrontal neurons and a GSK-3β inhibitor occluded this effect. In contrast to the widely proposed mechanism of modulating presynaptic glutamate release, our results strongly argue that mGluR2/3 agonists modulate the function of NMDA receptors through postsynaptic actions and reverse the MK-801-induced NMDA dysfunction via the Akt/GSK-3β pathway. This study provides novel evidence for postsynaptic mechanisms of mGluR2/3 in regulation of NMDA receptors and presents useful insights into the mechanistic actions of mGluR2/3 agonists as potential antipsychotic agents for treating schizophrenia.
SUBMITTER: Xi D
PROVIDER: S-EPMC3079418 | biostudies-literature |
REPOSITORIES: biostudies-literature
ACCESS DATA