Unknown

Dataset Information

0

Changes in cross-bridge cycling underlie muscle weakness in patients with tropomyosin 3-based myopathy.


ABSTRACT: Nemaline myopathy, the most common non-dystrophic congenital myopathy, is caused by mutations in six genes, all of which encode thin-filament proteins, including NEB (nebulin) and TPM3 (? tropomyosin). In contrast to the mechanisms underlying weakness in NEB-based myopathy, which are related to loss of thin-filament functions normally exerted by nebulin, the pathogenesis of muscle weakness in patients with TPM3 mutations remains largely unknown. Here, we tested the hypothesis that the contractile phenotype of TPM3-based myopathy is different from that of NEB-based myopathy and that this phenotype is a direct consequence of the loss of the specific functions normally exerted by tropomyosin. To test this hypothesis, we used a multidisciplinary approach, including muscle fiber mechanics and confocal and electron microscopy to characterize the structural and functional phenotype of muscle fibers from five patients with TPM3-based myopathy and compared this with that of unaffected control subjects. Our findings demonstrate that patients with TPM3-based myopathy display a contractile phenotype that is very distinct from that of patients with NEB-based myopathy. Whereas both show severe myofilament-based muscle weakness, the contractile dysfunction in TPM3-based myopathy is largely explained by changes in cross-bridge cycling kinetics, but not by the dysregulation of sarcomeric thin-filament length that plays a prominent role in NEB-based myopathy. Interestingly, the loss of force-generating capacity in TPM3-based myopathy appears to be compensated by enhanced thin-filament activation. These findings provide a scientific basis for differential therapeutics aimed at restoring contractile performance in patients with TPM3-based versus NEB-based myopathy.

SUBMITTER: Ottenheijm CA 

PROVIDER: S-EPMC3080611 | biostudies-literature | 2011 May

REPOSITORIES: biostudies-literature

altmetric image

Publications

Changes in cross-bridge cycling underlie muscle weakness in patients with tropomyosin 3-based myopathy.

Ottenheijm Coen A C CA   Lawlor Michael W MW   Stienen Ger J M GJ   Granzier Henk H   Beggs Alan H AH  

Human molecular genetics 20110228 10


Nemaline myopathy, the most common non-dystrophic congenital myopathy, is caused by mutations in six genes, all of which encode thin-filament proteins, including NEB (nebulin) and TPM3 (α tropomyosin). In contrast to the mechanisms underlying weakness in NEB-based myopathy, which are related to loss of thin-filament functions normally exerted by nebulin, the pathogenesis of muscle weakness in patients with TPM3 mutations remains largely unknown. Here, we tested the hypothesis that the contractil  ...[more]

Similar Datasets

| S-EPMC4614700 | biostudies-literature
| S-EPMC7435030 | biostudies-literature
| S-EPMC4532654 | biostudies-literature
| S-EPMC5821533 | biostudies-literature
| S-EPMC3485437 | biostudies-literature
| S-EPMC4602262 | biostudies-literature
| S-EPMC2906900 | biostudies-other
| S-EPMC4481580 | biostudies-literature
| S-EPMC3237018 | biostudies-literature
| S-EPMC409864 | biostudies-literature