Project description:Choline is needed for the maintenance of the structural integrity and signaling functions of cell membranes, for neurotransmission, and for transport of lipids and as a source of methyl groups. Choline can be made de novo in the body, but some individuals must also obtain choline in the diet to prevent deficiency symptoms. A number of environmental and genetic factors influence dietary requirements for choline, and average intakes in the population vary widely. Therefore, certain individuals may be at greater risk of choline deficiency. Choline is critical during fetal development, particularly during the development of the brain, where it can influence neural tube closure and lifelong memory and learning functions.
Project description:Nutrient needs, including those of the essential nutrient choline, are a population wide distribution. Adequate Intake (AI) recommendations for dietary choline (put forth by the National Academies of Medicine to aid individuals and groups in dietary assessment and planning) are grouped to account for the recognized unique needs associated with age, biological sex, and reproductive status (i.e., pregnancy or lactation). Established and emerging evidence supports the notion that common genetic variants are additional factors that substantially influence nutrient requirements. This review summarizes the genetic factors that influence choline requirements and metabolism in conditions of nutrient deprivation, as well as conditions of nutrient adequacy, across biological sexes and reproductive states. Overall, consistent and strong associative evidence demonstrates that common genetic variants in choline and folate pathway enzymes impact the metabolic handling of choline and the risk of nutrient inadequacy across varied dietary contexts. The studies characterized in this review also highlight the substantial promise of incorporating common genetic variants into choline intake recommendations to more precisely target the unique nutrient needs of these subgroups within the broader population. Additional studies are warranted to facilitate the translation of this evidence to nutrigenetics-based dietary approaches.
Project description:Choline is an essential nutrient needed for the structural integrity and signaling functions of cell membranes; for normal cholinergic neurotransmission; for normal muscle function; for lipid transport from liver; and it is the major source of methyl groups in the diet. Choline is critical during fetal development, when it influences stem cell proliferation and apoptosis, thereby altering brain and spinal cord structure and function and influencing risk for neural tube defects and lifelong memory function. Choline is derived not only from the diet, but from de novo synthesis as well. Though many foods contain choline, there is at least a twofold variation in dietary intake in humans. When deprived of dietary choline, most men and postmenopausal women developed signs of organ dysfunction (fatty liver or muscle damage), while less than half of premenopausal women developed such signs. Aside from gender differences, there is significant variation in the dietary requirement for choline that can be explained by very common genetic polymorphisms.
Project description:BackgroundCholine is obtained from the diet and from the biosynthesis of phosphatidylcholine. Phosphatidylcholine is catalyzed by the enzyme phosphatidylethanolamine-N-methyltransferase (PEMT), which is induced by estrogen. Because they have lower estrogen concentrations, postmenopausal women are more susceptible to the risk of organ dysfunction in response to a low-choline diet. A common genetic polymorphism (rs12325817) in the PEMT gene can also increase this risk.ObjectiveThe objective was to determine whether the risk of low choline-related organ dysfunction increases with the number of alleles of rs12325817 in premenopausal women and whether postmenopausal women (with or without rs12325817) treated with estrogen are more resistant to developing such symptoms.DesignPremenopausal women (n = 27) consumed a choline-sufficient diet followed by a very-low-choline diet until they developed organ dysfunction (or for 42 d), which was followed by a high-choline diet. Postmenopausal women (n = 22) were placed on the same diets but were first randomly assigned to receive estrogen or a placebo. The women were monitored for organ dysfunction and plasma choline metabolites and were genotyped for rs12325817.ResultsA dose-response effect of rs12325817 on the risk of choline-related organ dysfunction was observed in premenopausal women: 80%, 43%, and 13% of women with 2, 1, or 0 alleles, respectively, developed organ dysfunction. Among postmenopausal women, 73% who received placebo but only 18% who received estrogen developed organ dysfunction during the low-choline diet.ConclusionsBecause of their lower estrogen concentrations, postmenopausal women have a higher dietary requirement for choline than do premenopausal women. Choline requirements for both groups of women are further increased by rs12325817. This trial was registered at clinicaltrials.gov as NCT00065546.
Project description:BackgroundAlthough humans require dietary choline for methyl donation, membrane function, and neurotransmission, choline can also be derived from the de novo synthesis of phosphatidylcholine, which is up-regulated by estrogen. A recommended Adequate Intake (AI) exists for choline; however, an Estimated Average Requirement has not been set because of a lack of sufficient human data.ObjectiveThe objective of the study was to evaluate the dietary requirements for choline in healthy men and women and to investigate the clinical sequelae of choline deficiency.DesignFifty-seven adult subjects (26 men, 16 premenopausal women, 15 postmenopausal women) were fed a diet containing 550 mg choline x 70 kg(-1) x d(-1) for 10 d followed by <50 mg choline x 70 kg(-1) x d(-1) with or without a folic acid supplement (400 microg/d per randomization) for up to 42 d. Subjects who developed organ dysfunction during this diet had normal organ function restored after incremental amounts of choline were added back to the diet. Blood and urine were monitored for signs of toxicity and metabolite concentrations, and liver fat was assessed by using magnetic resonance imaging.ResultsWhen deprived of dietary choline, 77% of men and 80% of postmenopausal women developed fatty liver or muscle damage, whereas only 44% of premenopausal women developed such signs of organ dysfunction. Moreover, 6 men developed these signs while consuming 550 mg choline x 70 kg(-1) x d(-1), the AI for choline. Folic acid supplementation did not alter the subjects' response.ConclusionSubject characteristics (eg, menopausal status) modulated the dietary requirement for choline, and a daily intake at the current AI was not sufficient to prevent organ dysfunction in 19 of the subjects.
Project description:Science is beginning to understand how genetic variation and epigenetic events alter requirements for, and responses to, nutrients (nutrigenomics). At the same time, methods for profiling almost all of the products of metabolism in a single sample of blood or urine are being developed (metabolomics). Relations between diet and nutrigenomic and metabolomic profiles and between those profiles and health have become important components of research that could change clinical practice in nutrition. Most nutrition studies assume that all persons have average dietary requirements, and the studies often do not plan for a large subset of subjects who differ in requirements for a nutrient. Large variances in responses that occur when such a population exists can result in statistical analyses that argue for a null effect. If nutrition studies could better identify responders and differentiate them from nonresponders on the basis of nutrigenomic or metabolomic profiles, the sensitivity to detect differences between groups could be greatly increased, and the resulting dietary recommendations could be appropriately targeted. It is not certain that nutrition will be the clinical specialty primarily responsible for nutrigenomics or metabolomics, because other disciplines currently dominate the development of portions of these fields. However, nutrition scientists' depth of understanding of human metabolism can be used to establish a role in the research and clinical programs that will arise from nutrigenomic and metabolomic profiling. Investments made today in training programs and in research methods could ensure a new foundation for clinical nutrition in the future.
Project description:Peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription factors that mediate the effects of several nutrients or drugs through transcriptional regulation of their target genes in obesogenic environments. This review consists of three parts. First, we summarize current knowledge regarding the role of PPARs in governing the development of white and brown/beige adipocytes from uncommitted progenitor cells. Next, we discuss the interactions of dietary bioactive molecules, such as fatty acids and phytochemicals, with PPARs for the modulation of PPAR-dependent transcriptional activities and metabolic consequences. Lastly, the effects of PPAR polymorphism on obesity and metabolic outcomes are discussed. In this review, we aim to highlight the critical role of PPARs in the modulation of adiposity and subsequent metabolic adaptation in response to dietary challenges and genetic modifications. Understanding the changes in obesogenic environments as a consequence of PPARs/nutrient interactions may help expand the field of individualized nutrition to prevent obesity and obesity-associated metabolic comorbidities.
Project description:As a whole food, the potential health benefits of table grapes have been widely studied. Some individual constituents have garnered great attention, particularly resveratrol, but normal quantities in the diet are meniscal. On the other hand, the grape contains hundreds of compounds, many of which have antioxidant potential. Nonetheless, the achievement of serum or tissue concentrations of grape antioxidants sufficient to mediate a direct quenching effect is not likely, which supports the idea of biological responses being mediated by an indirect catalytic-type response. We demonstrate herein with Hsd:ICR (CD-1® Outbred, 18-24 g, 3-4 weeks old, female) mice that supplementation of a semi-synthetic diet with a grape surrogate, equivalent to the human consumption of 2.5 servings per day for 12 months, modulates gene expression in the liver, kidney, colon, and ovary. As might be expected when sampling changes in a pool of over 35,000 genes, there are numerous functional implications. Analysis of some specific differentially expressed genes suggests the potential of grape consumption to bolster metabolic detoxification and regulation of reactive oxygen species in the liver, cellular metabolism, and anti-inflammatory activity in the ovary and kidney. In the colon, the data suggest anti-inflammatory activity, suppression of mitochondrial dysfunction, and maintaining homeostasis. Pathway analysis reveals a combination of up- and down-regulation in the target tissues, primarily up-regulated in the kidney and down-regulated in the ovary. More broadly, based on these data, it seems logical to conclude that grape consumption leads to modulation of gene expression throughout the body, the consequence of which may help to explain the broad array of activities demonstrated in diverse tissues such as the brain, heart, eye, bladder, and colon. In addition, this work further supports the profound impact of nutrigenomics on mammalian phenotypic expression.
Project description:Choline participates in methyl group metabolism and has been recognized for its roles in lipid metabolism, hepatic health and muscle function in various species. Data regarding the impacts of choline on feline metabolic pathways are scarce. The present study investigated how choline intake affects the metabolomic profile of overweight cats fed at maintenance energy. Overweight (n = 14; body condition score:6-8/9) male adult cats were supplemented with five doses of choline in a 5x5 Latin Square design. Cats received a daily dose of choline on extruded food (3620 mg choline/kg diet) for three weeks at maintenance energy requirements (130 kcal/kgBW0.4). Doses were based on body weight (BW) and the daily recommended allowance (RA) for choline for adult cats (63 mg/kg BW0.67). Treatment groups included: Control (no additional choline, 1.2 x NRC RA, 77 mg/kg BW0.67), 2 x NRC RA (126 mg/kg BW0.67), 4 x NRC RA (252 mg/kg BW0.67), 6 x RA (378 mg/kg BW0.67), and 8 x NRC RA (504 mg/kg BW0.67). Serum was collected after an overnight fast at the end of each treatment period and analyzed for metabolomic parameters through nuclear magnetic resonance (NMR) spectroscopy and direct infusion mass spectrometry (DI-MS). Data were analyzed using GLIMMIX, with group and period as random effects, and dose as the fixed effect. Choline up to 8 x NRC RA was well-tolerated. Choline at 6 and 8 x NRC RA resulted in greater concentrations of amino acids and one-carbon metabolites (P < 0.05) betaine, dimethylglycine and methionine. Choline at 6 x NRC RA also resulted in greater phosphatidylcholine and sphingomyelin concentrations (P < 0.05). Supplemental dietary choline may be beneficial for maintaining hepatic health in overweight cats, as it may increase hepatic fat mobilization and methyl donor status. Choline may also improve lean muscle mass in cats. More research is needed to quantify how choline impacts body composition.