Unknown

Dataset Information

0

A Product Partition Model With Regression on Covariates.


ABSTRACT: We propose a probability model for random partitions in the presence of covariates. In other words, we develop a model-based clustering algorithm that exploits available covariates. The motivating application is predicting time to progression for patients in a breast cancer trial. We proceed by reporting a weighted average of the responses of clusters of earlier patients. The weights should be determined by the similarity of the new patient's covariate with the covariates of patients in each cluster. We achieve the desired inference by defining a random partition model that includes a regression on covariates. Patients with similar covariates are a priori more likely to be clustered together. Posterior predictive inference in this model formalizes the desired prediction.We build on product partition models (PPM). We define an extension of the PPM to include a regression on covariates by including in the cohesion function a new factor that increases the probability of experimental units with similar covariates to be included in the same cluster. We discuss implementations suitable for any combination of continuous, categorical, count, and ordinal covariates.An implementation of the proposed model as R-package is available for download.

SUBMITTER: Muller P 

PROVIDER: S-EPMC3090756 | biostudies-literature | 2011 Mar

REPOSITORIES: biostudies-literature

altmetric image

Publications

A Product Partition Model With Regression on Covariates.

Müller Peter P   Quintana Fernando F   Rosner Gary L GL  

Journal of computational and graphical statistics : a joint publication of American Statistical Association, Institute of Mathematical Statistics, Interface Foundation of North America 20110301 1


We propose a probability model for random partitions in the presence of covariates. In other words, we develop a model-based clustering algorithm that exploits available covariates. The motivating application is predicting time to progression for patients in a breast cancer trial. We proceed by reporting a weighted average of the responses of clusters of earlier patients. The weights should be determined by the similarity of the new patient's covariate with the covariates of patients in each clu  ...[more]

Similar Datasets

| S-EPMC4760115 | biostudies-literature
| S-EPMC9545070 | biostudies-literature
| S-EPMC4061254 | biostudies-literature
| S-EPMC4418629 | biostudies-literature
| S-EPMC3253577 | biostudies-literature
| S-EPMC7313320 | biostudies-literature
| S-EPMC5756534 | biostudies-literature
| S-EPMC4651204 | biostudies-literature
| S-EPMC4591554 | biostudies-literature
| S-EPMC10291923 | biostudies-literature