Unknown

Dataset Information

0

Tunable bifunctional silyl ether cross-linkers for the design of acid-sensitive biomaterials.


ABSTRACT: Responsive polymeric biomaterials can be triggered to degrade using localized environments found in vivo. A limited number of biomaterials provide precise control over the rate of degradation and the release rate of entrapped cargo and yield a material that is intrinsically nontoxic. In this work, we designed nontoxic acid-sensitive biomaterials based on silyl ether chemistry. A host of silyl ether cross-linkers were synthesized and molded into relevant medical devices, including Trojan horse particles, sutures, and stents. The resulting devices were engineered to degrade under acidic conditions known to exist in tumor tissue, inflammatory tissue, and diseased cells. The implementation of silyl ether chemistry gave precise control over the rate of degradation and afforded devices that could degrade over the course of hours, days, weeks, or months, depending upon the steric bulk around the silicon atom. These novel materials could be useful for numerous biomedical applications, including drug delivery, tissue repair, and general surgery.

SUBMITTER: Parrott MC 

PROVIDER: S-EPMC3097112 | biostudies-literature | 2010 Dec

REPOSITORIES: biostudies-literature

altmetric image

Publications

Tunable bifunctional silyl ether cross-linkers for the design of acid-sensitive biomaterials.

Parrott Matthew C MC   Luft J Chris JC   Byrne James D JD   Fain John H JH   Napier Mary E ME   Desimone Joseph M JM  

Journal of the American Chemical Society 20101124 50


Responsive polymeric biomaterials can be triggered to degrade using localized environments found in vivo. A limited number of biomaterials provide precise control over the rate of degradation and the release rate of entrapped cargo and yield a material that is intrinsically nontoxic. In this work, we designed nontoxic acid-sensitive biomaterials based on silyl ether chemistry. A host of silyl ether cross-linkers were synthesized and molded into relevant medical devices, including Trojan horse pa  ...[more]

Similar Datasets

| S-EPMC6678733 | biostudies-literature
| S-EPMC4225629 | biostudies-literature
| S-EPMC6300064 | biostudies-literature
| S-EPMC8284391 | biostudies-literature
| S-EPMC5377424 | biostudies-literature
| S-EPMC3362319 | biostudies-literature
| S-EPMC6644954 | biostudies-literature
| S-EPMC5712993 | biostudies-literature