Isolation and characterization of porcine amniotic fluid-derived multipotent stem cells.
Ontology highlight
ABSTRACT: The aim of this study was to isolate and characterize porcine amniotic fluid-derived multipotent stem cells (pAF-MSC). The porcine amniotic fluid (AF) from the amniotic cavity of pregnant gilts in the early stages of gestation (at E35) was collected and centrifuged for 5-10 min at 400 g to pellet cells. The primary culture of AF showed the multiple cell types, including the epithelial-like cells and fibroblast-like cells. By culturing in AMM medium for 6 to 8 days, the epithelial-like cells disappeared and the remaining cells presented the fibroblastoid morphology. The doubling time of pAF-MSCs was about 34.6 h, and the cells had been continually cultured over 60 passages in vitro. The flow cytometry results showed that pAF-MSCs were positive for CD44, CD117 and CD166, but negative for CD34, CD45 and CD54. Meanwhile, pAF-MSCs expressed ES cell markers, such as Oct4, Nanog, SSEA4, Tra-1-60 and Tra-1-81. The ratio of CD117(+) CD44(+) cells accounted for 98% of pAF-MSCs population. Three germ layer markers, including FGF5 (ectodermal marker), AFP (endodermal marker) and Bra (mesodermal marker), were detected in embryoid bodies derived from pAF-MSCs. Under the different induction conditions, the pAF-MSCs were capable of differentiating into neurocytes, adipocytes and beating cardiomyocytes. Furthermore, the pAF-MSCs didn't form teratoma when injected into immunodeficiency mice. These optimal features of pAF-MSCs provide an excellent alternative stem cell resource for potential cell therapy in regenerative medicine and transgenic animals.
SUBMITTER: Chen J
PROVIDER: S-EPMC3098286 | biostudies-literature | 2011
REPOSITORIES: biostudies-literature
ACCESS DATA