Unknown

Dataset Information

0

Influence of preformed Asp23-Lys28 salt bridge on the conformational fluctuations of monomers and dimers of Abeta peptides with implications for rates of fibril formation.


ABSTRACT: Recent experiments have shown that the congener Abeta(1-40)[D23-K28], in which the side chains of charged residues Asp23 and Lys28 are linked by a lactam bridge, forms amyloid fibrils that are structurally similar to the wild type (WT) Abeta peptide, but at a rate that is nearly 1000 times faster. We used all atom molecular dynamics simulations in explicit water, and two force fields, of the WT dimer, a monomer with the lactam bridge (Abeta(10-35)-lactam[D23-K28]), and the monomer and dimers with harmonically constrained D23-K28 salt bridge (Abeta(10-35)[D23-K28]) to understand the origin of the enhanced fibril rate formation. The simulations show that the assembly competent fibril-like monomer (N*) structure, which is present among the conformations sampled by the isolated monomer, with strand conformations in the residues spanning the N and C termini and a bend involving residues D(23) VGSNKG(29), are populated to a much greater extent in Abeta(10-35)[D23-K28] and Abeta(10-35)-lactam[D23-K28] than in the WT, which has negligible probability of forming N*. The salt bridge in N* of Abeta(10-35)[D23-K28], whose topology is similar to that found in the fibril, is hydrated. The reduction in the free energy barrier to fibril formation in Abeta(10-35)[D23-K28] and in Abeta(10-35)-lactam[D23-K28], compared to the WT, arises largely due to entropic restriction which enables the bend formation. A decrease in the entropy of the unfolded state and the lesser penalty for conformational rearrangement including the formation of the salt bridge in Abeta peptides with D23-K28 constraint results in a reduction in the kinetic barrier in the Abeta(1-40)-lactam[D23-K28] congener compared to the WT. The decrease in the barrier, which is related to the free energy cost of forming a bend, is estimated to be in the range (4-7)k(B)T. Although a number of factors determine the growth of fibrils, the decrease in the free energy barrier, relative to the WT, to N* formation is a major factor in the rate enhancement in the fibril formation of Abeta(1-40)[D23-K28] congener. Qualitatively similar results were obtained using simulations of Abeta(9-40) peptides and various constructs related to the Abeta(10-35) systems that were probed using OPLS and CHARMM force fields. We hypothesize that mutations or other constraints that preferentially enhance the population of the N* species would speed up aggregation rates. Conversely, ligands that lock it in the fibril-like N* structure would prevent amyloid formation.

SUBMITTER: Reddy G 

PROVIDER: S-EPMC3098509 | biostudies-literature | 2009 Jan

REPOSITORIES: biostudies-literature

altmetric image

Publications

Influence of preformed Asp23-Lys28 salt bridge on the conformational fluctuations of monomers and dimers of Abeta peptides with implications for rates of fibril formation.

Reddy Govardhan G   Straub John E JE   Thirumalai D D  

The journal of physical chemistry. B 20090101 4


Recent experiments have shown that the congener Abeta(1-40)[D23-K28], in which the side chains of charged residues Asp23 and Lys28 are linked by a lactam bridge, forms amyloid fibrils that are structurally similar to the wild type (WT) Abeta peptide, but at a rate that is nearly 1000 times faster. We used all atom molecular dynamics simulations in explicit water, and two force fields, of the WT dimer, a monomer with the lactam bridge (Abeta(10-35)-lactam[D23-K28]), and the monomer and dimers wit  ...[more]

Similar Datasets

| S-EPMC10119806 | biostudies-literature
| S-EPMC2148273 | biostudies-literature
| S-EPMC3058518 | biostudies-literature
| S-EPMC2426824 | biostudies-literature
| S-EPMC2711452 | biostudies-literature
| S-EPMC1965449 | biostudies-literature
| S-EPMC10097620 | biostudies-literature
| S-EPMC6943190 | biostudies-literature
| S-EPMC2896556 | biostudies-literature
2015-04-23 | E-GEOD-68160 | biostudies-arrayexpress