Unknown

Dataset Information

0

Engineering of insulin receptor isoform-selective insulin analogues.


ABSTRACT: BACKGROUND: The insulin receptor (IR) exists in two isoforms, A and B, and the isoform expression pattern is tissue-specific. The C-terminus of the insulin B chain is important for receptor binding and has been shown to contact the IR just adjacent to the region where the A and B isoforms differ. The aim of this study was to investigate the importance of the C-terminus of the B chain in IR isoform binding in order to explore the possibility of engineering tissue-specific/liver-specific insulin analogues. METHODOLOGY/PRINCIPAL FINDINGS: Insulin analogue libraries were constructed by total amino acid scanning mutagenesis. The relative binding affinities for the A and B isoform of the IR were determined by competition assays using scintillation proximity assay technology. Structural information was obtained by X-ray crystallography. Introduction of B25A or B25N mutations resulted in analogues with a 2-fold preference for the B compared to the A isoform, whereas the opposite was observed with a B25Y substitution. An acidic amino acid residue at position B27 caused an additional 2-fold selective increase in affinity for the receptor B isoform for analogues bearing a B25N mutation. Furthermore, the combination of B25H with either B27D or B27E also resulted in B isoform-preferential analogues (2-fold preference) even though the corresponding single mutation analogues displayed no differences in relative isoform binding affinity. CONCLUSIONS/SIGNIFICANCE: We have discovered a new class of IR isoform-selective insulin analogues with 2-4-fold differences in relative binding affinities for either the A or the B isoform of the IR compared to human insulin. Our results demonstrate that a mutation at position B25 alone or in combination with a mutation at position B27 in the insulin molecule confers IR isoform selectivity. Isoform-preferential analogues may provide new opportunities for developing insulin analogues with improved clinical benefits.

SUBMITTER: Glendorf T 

PROVIDER: S-EPMC3098868 | biostudies-literature | 2011

REPOSITORIES: biostudies-literature

altmetric image

Publications

Engineering of insulin receptor isoform-selective insulin analogues.

Glendorf Tine T   Stidsen Carsten E CE   Norrman Mathias M   Nishimura Erica E   Sørensen Anders R AR   Kjeldsen Thomas T  

PloS one 20110520 5


<h4>Background</h4>The insulin receptor (IR) exists in two isoforms, A and B, and the isoform expression pattern is tissue-specific. The C-terminus of the insulin B chain is important for receptor binding and has been shown to contact the IR just adjacent to the region where the A and B isoforms differ. The aim of this study was to investigate the importance of the C-terminus of the B chain in IR isoform binding in order to explore the possibility of engineering tissue-specific/liver-specific in  ...[more]

Similar Datasets

| S-EPMC5529358 | biostudies-literature
| S-EPMC5039983 | biostudies-literature
| S-EPMC3392524 | biostudies-literature
| S-EPMC3322853 | biostudies-literature
| S-EPMC4201381 | biostudies-literature
| S-EPMC5916551 | biostudies-literature
| S-EPMC3471159 | biostudies-literature
| S-EPMC10165928 | biostudies-literature
| S-EPMC5059684 | biostudies-literature
| S-EPMC2717875 | biostudies-other