Unknown

Dataset Information

0

Dietary and genetic evidence for enhancing glucose metabolism and reducing obesity by inhibiting klotho functions.


ABSTRACT: Klotho is a multifunctional protein involved in numerous biological functions, ranging from mineral ion metabolism to signaling activities. Recent studies have identified klotho as a target gene for peroxisome proliferator-activated receptor-? (PPAR-?), a master regulator of adipocyte differentiation, and an adipogenesis-promoting factor. In a similar line of observation, eliminating klotho function from mice resulted in the generation of lean mice with almost no detectable fat tissue. In contrast to the klotho-knockout mice (11.7±0.3 g at 9 wk), leptin-deficient (ob/ob) mice are severely obese (49.3±0.6 g at 9 wk), due to excessive fat accumulation. To study the in vivo role of klotho in obesity, we have generated and characterized ob/ob mice lacking klotho activity [ob/ob-klotho double-knockout (DKO) mice]. The ob/ob mice started to get bigger from 3 wk onward and gained almost 2 times more weight than their wild-type (WT) counterparts (WT vs. ob/ob: 34.8±1.3 vs. 65.5±1.2 g at 21 wk). The generated ob/ob-klotho DKO mice were not only viable throughout their adulthood but also showed markedly reduced fat tissue accumulation compared to their ob/ob littermates. The ob/ob-klotho DKO mice had significantly (P<0.01) less retroperitoneal, mesenteric, and epididymal fat accumulation, compared to their ob/ob counterparts. Similarly, the fatty liver that was consistently observed in the ob/ob mice was eliminated in the ob/ob-klotho DKO mice. Such structural improvement in the liver was also evident from markedly reduced fasting blood glucose levels in ob/ob-klotho DKO mice, compared to their ob/ob counterparts (ob/ob vs. ob/ob-klotho DKO: 266 ± 36 vs. 65±2 mg/dl). Finally, to study whether the absence of klotho can induce resistance to high-fat-diet-induced obesity, we provided a high-fat (60%) diet to klotho-knockout mice and compared them with normal-fat (20%) diet-fed klotho-knockout mice. No significant difference in body weight was detected in klotho-knockout mice fed either the normal-fat diet or high-fat diet, while WT mice fed the high-fat diet gradually gained body weight, compared to the normal-fat-diet-fed counterparts. The results of our dietary and genetic manipulation studies provide in vivo evidence for a role of klotho in obesity and offer a novel target to manipulate obesity and associated complications.

SUBMITTER: Ohnishi M 

PROVIDER: S-EPMC3101030 | biostudies-literature | 2011 Jun

REPOSITORIES: biostudies-literature

altmetric image

Publications

Dietary and genetic evidence for enhancing glucose metabolism and reducing obesity by inhibiting klotho functions.

Ohnishi Mutsuko M   Kato Shigeko S   Akiyoshi Junko J   Atfi Azeddine A   Razzaque M Shawkat MS  

FASEB journal : official publication of the Federation of American Societies for Experimental Biology 20110307 6


Klotho is a multifunctional protein involved in numerous biological functions, ranging from mineral ion metabolism to signaling activities. Recent studies have identified klotho as a target gene for peroxisome proliferator-activated receptor-γ (PPAR-γ), a master regulator of adipocyte differentiation, and an adipogenesis-promoting factor. In a similar line of observation, eliminating klotho function from mice resulted in the generation of lean mice with almost no detectable fat tissue. In contra  ...[more]

Similar Datasets

| S-EPMC8249130 | biostudies-literature
| S-EPMC9562633 | biostudies-literature
| S-EPMC6983433 | biostudies-literature
| S-EPMC6894049 | biostudies-literature
| S-EPMC9761155 | biostudies-literature
| S-EPMC6237479 | biostudies-literature
| S-EPMC4375081 | biostudies-literature
| S-EPMC9940387 | biostudies-literature
| S-EPMC8607635 | biostudies-literature
| S-EPMC4628107 | biostudies-literature