Unknown

Dataset Information

0

Inhibitory effect of a triterpenoid compound, with or without alpha interferon, on hepatitis C virus infection.


ABSTRACT: A lack of patient response to alpha interferon (?-IFN) plus ribavirin (RBV) treatment is a major problem in eliminating hepatitis C virus (HCV). We screened chemical libraries for compounds that enhanced cellular responses to ?-IFN and identified a triterpenoid, toosendanin (TSN). Here, we studied the effects and mechanisms of action of TSN on HCV replication and its effect on ?-IFN signaling. We treated HCV genotype 1b replicon-expressing cells and HCV-J6/JFH-infected cells with TSN, with or without ?-IFN, and the level of HCV replication was quantified. To study the effects of TSN on ?-IFN signaling, we detected components of the interferon-stimulated gene factor 3 (ISGF3), phosphorylated signal transducer and activator of transcription 1 (STAT1), and STAT2 by Western blotting analysis; expression levels of mRNA of interferon regulatory factor 9 using real-time reverse transcription-PCR (RT-PCR); and interferon-stimulated response element reporter activity and measured the expression levels of interferon-inducible genes for 2',5'-oligoadenylate synthetase, MxA, protein kinase R, and p56 using real-time RT-PCR. TSN alone specifically inhibited expression of the HCV replicon (50% effective concentration = 20.6 nM, 50% cytotoxic concentration > 3 ?M, selectivity index > 146). Pretreatment with TSN prior to ?-IFN treatment was more effective in suppressing HCV replication than treatment with either drug alone. Although TSN alone did not activate the ?-IFN pathway, it significantly enhanced the ?-IFN-induced increase of phosphorylated STATs, interferon-stimulated response element activation, and interferon-stimulated gene expression. TSN significantly increased baseline expression of interferon regulatory factor 9, a component of interferon-stimulated gene factor 3. Antiviral effects of treatment with ?-IFN can be enhanced by pretreatment with TSN. Its mechanisms of action could potentially be important to identify novel molecular targets to treat HCV infection.

SUBMITTER: Watanabe T 

PROVIDER: S-EPMC3101404 | biostudies-literature | 2011 Jun

REPOSITORIES: biostudies-literature

altmetric image

Publications


A lack of patient response to alpha interferon (α-IFN) plus ribavirin (RBV) treatment is a major problem in eliminating hepatitis C virus (HCV). We screened chemical libraries for compounds that enhanced cellular responses to α-IFN and identified a triterpenoid, toosendanin (TSN). Here, we studied the effects and mechanisms of action of TSN on HCV replication and its effect on α-IFN signaling. We treated HCV genotype 1b replicon-expressing cells and HCV-J6/JFH-infected cells with TSN, with or wi  ...[more]

Similar Datasets

| S-EPMC115097 | biostudies-literature
| S-EPMC10066548 | biostudies-literature
| S-EPMC5557905 | biostudies-literature
| S-EPMC5124986 | biostudies-literature
| S-EPMC8949671 | biostudies-literature
| S-EPMC6393205 | biostudies-literature
| S-EPMC5452008 | biostudies-literature
| S-EPMC8651562 | biostudies-literature
| S-EPMC9354525 | biostudies-literature
| S-EPMC3568254 | biostudies-literature