Functional subdivisions in the left angular gyrus where the semantic system meets and diverges from the default network.
Ontology highlight
ABSTRACT: The left angular gyrus (AG) is reliably activated across a wide range of semantic tasks, and is also a consistently reported component of the so-called default network that it is deactivated during all goal-directed tasks. We show here that there is only partial overlap between the semantic system and the default network in left AG and the overlap defines a reliable functional landmark that can be used to segregate functional subdivisions within AG. In 94 healthy human subjects, we collected functional magnetic resonance imaging (fMRI) data during fixation and eight goal directed tasks that involved semantic matching, perceptual matching or speech production in response to familiar or unfamiliar stimuli presented in either verbal (letters) or nonverbal (pictures) formats. Our results segregated three different left AG regions that were all activated by semantic relative to perceptual matching: (1) a midregion (mAG) that overlapped with the default network because it was deactivated during all tasks relative to fixation; (2) a dorsomesial region (dAG) that was more activated by all tasks relative to fixation; and (3) a ventrolateral region (vAG) that was only activated above fixation during semantic matching. By examining the effects of task and stimuli in each AG subdivision, we propose that mAG is involved in semantic associations regardless of the presence or absence of a stimulus; dAG is involved in searching for semantics in all visual stimuli, and vAG is involved in the conceptual identification of visual inputs. Our findings provide a framework for reporting and interpreting AG activations with greater definition.
SUBMITTER: Seghier ML
PROVIDER: S-EPMC3105816 | biostudies-literature | 2010 Dec
REPOSITORIES: biostudies-literature
ACCESS DATA