Unknown

Dataset Information

0

3'-Phosphoadenosine-5'-phosphosulfate reductase in complex with thioredoxin: a structural snapshot in the catalytic cycle.


ABSTRACT: The crystal structure of Escherichia coli 3'-phosphoadenosine-5'-phosphosulfate (PAPS) reductase in complex with E. coli thioredoxin 1 (Trx1) has been determined to 3.0 A resolution. The two proteins are covalently linked via a mixed disulfide that forms during nucleophilic attack of Trx's N-terminal cysteine on the Sgamma atom of the PAPS reductase S-sulfocysteine (E-Cys-Sgamma-SO3-), a central intermediate in the catalytic cycle. For the first time in a crystal structure, residues 235-244 in the PAPS reductase C-terminus are observed, depicting an array of interprotein salt bridges between Trx and the strictly conserved glutathione-like sequence, Glu238Cys239Gly240Leu241His242. The structure also reveals a Trx-binding surface adjacent to the active site cleft and regions of PAPS reductase associated with conformational change. Interaction at this site strategically positions Trx to bind the S-sulfated C-terminus and addresses the mechanism for requisite structural rearrangement of this domain. An apparent sulfite-binding pocket at the protein-protein interface explicitly orients the S-sulfocysteine Sgamma atom for nucleophilic attack in a subsequent step. Taken together, the structure of PAPS reductase in complex with Trx highlights the large structural rearrangement required to accomplish sulfonucleotide reduction and suggests a role for Trx in catalysis beyond the paradigm of disulfide reduction.

SUBMITTER: Chartron J 

PROVIDER: S-EPMC3109433 | biostudies-literature | 2007 Apr

REPOSITORIES: biostudies-literature

altmetric image

Publications

3'-Phosphoadenosine-5'-phosphosulfate reductase in complex with thioredoxin: a structural snapshot in the catalytic cycle.

Chartron Justin J   Shiau Carrie C   Stout C David CD   Carroll Kate S KS  

Biochemistry 20070313 13


The crystal structure of Escherichia coli 3'-phosphoadenosine-5'-phosphosulfate (PAPS) reductase in complex with E. coli thioredoxin 1 (Trx1) has been determined to 3.0 A resolution. The two proteins are covalently linked via a mixed disulfide that forms during nucleophilic attack of Trx's N-terminal cysteine on the Sgamma atom of the PAPS reductase S-sulfocysteine (E-Cys-Sgamma-SO3-), a central intermediate in the catalytic cycle. For the first time in a crystal structure, residues 235-244 in t  ...[more]

Similar Datasets

| S-EPMC4230322 | biostudies-literature
| S-EPMC2952258 | biostudies-literature
| S-EPMC3546728 | biostudies-literature
| S-EPMC2765882 | biostudies-literature
| S-EPMC3366831 | biostudies-literature
| S-EPMC7679956 | biostudies-literature
| S-EPMC3957198 | biostudies-literature
| S-EPMC3658134 | biostudies-literature
| S-EPMC94033 | biostudies-literature
| S-EPMC3400793 | biostudies-literature