Unknown

Dataset Information

0

The Conformation of the Estrogen Receptor Directs Estrogen-Induced Apoptosis in Breast Cancer: A Hypothesis.


ABSTRACT: BACKGROUND: Estrogens are classified as type I (planar) and type II (angular) based on their structures. In this study we have used triphenylethylenes (TPEs) compounds related to 4OHT to address the hypothesis that the conformation of the liganded estrogen receptor (ER?) may dictate the E2-induced apoptosis of the ER+ breast cancer cells. MATERIALS AND METHODS: ER? positive MCF7:5C cells were used to study the apoptosis induced by E2, 4OHT and TPEs. Growth and apoptosis assay were used to evaluate apoptosis and the ability to reverse the E2-induced apoptosis. ER? protein were measured by western blotting to investigate the destruction of ER? by TPEs in MCF7 cells. ChIP assay were performed to study the in-vivo recruitment of ER? and SRC3 at classical E2-responsive promoter TFF1 (PS2) by TPEs. Molecular modeling was used to predict the binding mode of the TPE to the ER?. RESULTS: TPEs were not only unable to induce efficient apoptosis in MCF7:5C cells but also reversed the E2-induced apoptosis similar to 4OHT. Furthermore, the TPEs and 4OHT did not reduce the ER? protein levels unlike E2. ChIP assay confirmed very weak recruitment of SRC3 despite modest recruitment of ER? in the presence of TPEs. Molecular modeling suggested the TPE would bind in antagonistic mode with the ER?. CONCLUSION: Our results advances the hypothesis that the TPE liganded ER? complex structurally resembles the 4OHT bound ER? and cannot efficiently recruit co-activator SRC3. As a result, the TPE complex cannot induce apoptosis of ER+ breast cancer cells although it may cause growth of the breast cancer cells. The conformation of the estrogen-ER complex differentially controls growth and apoptosis.

SUBMITTER: Maximov P 

PROVIDER: S-EPMC3109984 | biostudies-literature | 2011 Mar

REPOSITORIES: biostudies-literature

altmetric image

Publications

The Conformation of the Estrogen Receptor Directs Estrogen-Induced Apoptosis in Breast Cancer: A Hypothesis.

Maximov Philipp P   Sengupta Surojeet S   Lewis-Wambi Joan S JS   Kim Helen R HR   Curpan Ramona F RF   Jordan V Craig VC  

Hormone molecular biology and clinical investigation 20110301 1


BACKGROUND: Estrogens are classified as type I (planar) and type II (angular) based on their structures. In this study we have used triphenylethylenes (TPEs) compounds related to 4OHT to address the hypothesis that the conformation of the liganded estrogen receptor (ERα) may dictate the E2-induced apoptosis of the ER+ breast cancer cells. MATERIALS AND METHODS: ERα positive MCF7:5C cells were used to study the apoptosis induced by E2, 4OHT and TPEs. Growth and apoptosis assay were used to evalua  ...[more]

Similar Datasets

| S-EPMC3990021 | biostudies-literature
| S-EPMC8960923 | biostudies-literature
| S-EPMC6279501 | biostudies-literature
| S-EPMC3497783 | biostudies-literature
| S-EPMC6774891 | biostudies-literature
| S-EPMC4040680 | biostudies-literature
2012-11-02 | E-GEOD-39870 | biostudies-arrayexpress
| S-EPMC7294906 | biostudies-literature
2012-11-02 | GSE39870 | GEO
| S-EPMC3715569 | biostudies-literature