Unknown

Dataset Information

0

Reconciling apparent conflicts between mitochondrial and nuclear phylogenies in African elephants.


ABSTRACT: Conservation strategies for African elephants would be advanced by resolution of conflicting claims that they comprise one, two, three or four taxonomic groups, and by development of genetic markers that establish more incisively the provenance of confiscated ivory. We addressed these related issues by genotyping 555 elephants from across Africa with microsatellite markers, developing a method to identify those loci most effective at geographic assignment of elephants (or their ivory), and conducting novel analyses of continent-wide datasets of mitochondrial DNA. Results showed that nuclear genetic diversity was partitioned into two clusters, corresponding to African forest elephants (99.5% Cluster-1) and African savanna elephants (99.4% Cluster-2). Hybrid individuals were rare. In a comparison of basal forest "F" and savanna "S" mtDNA clade distributions to nuclear DNA partitions, forest elephant nuclear genotypes occurred only in populations in which S clade mtDNA was absent, suggesting that nuclear partitioning corresponds to the presence or absence of S clade mtDNA. We reanalyzed African elephant mtDNA sequences from 81 locales spanning the continent and discovered that S clade mtDNA was completely absent among elephants at all 30 sampled tropical forest locales. The distribution of savanna nuclear DNA and S clade mtDNA corresponded closely to range boundaries traditionally ascribed to the savanna elephant species based on habitat and morphology. Further, a reanalysis of nuclear genetic assignment results suggested that West African elephants do not comprise a distinct third species. Finally, we show that some DNA markers will be more useful than others for determining the geographic origins of illegal ivory. These findings resolve the apparent incongruence between mtDNA and nuclear genetic patterns that has confounded the taxonomy of African elephants, affirm the limitations of using mtDNA patterns to infer elephant systematics or population structure, and strongly support the existence of two elephant species in Africa.

SUBMITTER: Ishida Y 

PROVIDER: S-EPMC3110795 | biostudies-literature | 2011

REPOSITORIES: biostudies-literature

altmetric image

Publications

Reconciling apparent conflicts between mitochondrial and nuclear phylogenies in African elephants.

Ishida Yasuko Y   Oleksyk Taras K TK   Georgiadis Nicholas J NJ   David Victor A VA   Zhao Kai K   Stephens Robert M RM   Kolokotronis Sergios-Orestis SO   Roca Alfred L AL  

PloS one 20110608 6


Conservation strategies for African elephants would be advanced by resolution of conflicting claims that they comprise one, two, three or four taxonomic groups, and by development of genetic markers that establish more incisively the provenance of confiscated ivory. We addressed these related issues by genotyping 555 elephants from across Africa with microsatellite markers, developing a method to identify those loci most effective at geographic assignment of elephants (or their ivory), and condu  ...[more]

Similar Datasets

| S-EPMC7996624 | biostudies-literature
| S-EPMC8138028 | biostudies-literature
| S-EPMC3182748 | biostudies-literature
| S-EPMC3689351 | biostudies-literature
| S-EPMC4311964 | biostudies-literature
| S-EPMC7716538 | biostudies-literature
| S-EPMC3777957 | biostudies-literature
| S-EPMC8818034 | biostudies-literature
| S-EPMC2679069 | biostudies-literature
| S-EPMC3991718 | biostudies-literature