Immune dysregulation by the rheumatoid arthritis shared epitope.
Ontology highlight
ABSTRACT: Rheumatoid arthritis (RA) is closely associated with HLA-DRB1 alleles that code a five-amino acid sequence motif in positions 70-74 of the HLA-DRbeta-chain, called the shared epitope (SE). The mechanistic basis of SE-RA association is unknown. We recently found that the SE functions as an allele-specific signal-transducing ligand that activates an NO-mediated pathway in other cells. To better understand the role of the SE in the immune system, we examined its effect on T cell polarization in mice. In CD11c(+)CD8(+) dendritic cells (DCs), the SE inhibited the enzymatic activity of indoleamine 2,3 dioxygenase, a key enzyme in immune tolerance and T cell regulation, whereas in CD11c(+)CD8(-) DCs, the ligand activated robust production of IL-6. When SE-activated DCs were cocultured with CD4(+) T cells, the differentiation of Foxp3(+) T regulatory cells was suppressed, whereas Th17 cells were expanded. The polarizing effects could be seen with SE(+) synthetic peptides, but even more so when the SE was in its natural tridimensional conformation as part of HLA-DR tetrameric proteins. In vivo administration of the SE ligand resulted in a greater abundance of Th17 cells in the draining lymph nodes and increased IL-17 production by splenocytes. Thus, we conclude that the SE acts as a potent immune-stimulatory ligand that can polarize T cell differentiation toward Th17 cells, a T cell subset that was recently implicated in the pathogenesis of autoimmune diseases, including RA.
SUBMITTER: De Almeida DE
PROVIDER: S-EPMC3111926 | biostudies-literature | 2010 Aug
REPOSITORIES: biostudies-literature
ACCESS DATA