Unknown

Dataset Information

0

TLR1/2 activation during heterologous prime-boost vaccination (DNA-MVA) enhances CD8+ T Cell responses providing protection against Leishmania (Viannia).


ABSTRACT:

Background

Leishmania (Viannia) parasites present particular challenges, as human and murine immune responses to infection are distinct from other Leishmania species, indicating a unique interaction with the host. Further, vaccination studies utilizing small animal models indicate that modalities and antigens that prevent infection by other Leishmania species are generally not protective.

Methodology

Using a newly developed mouse model of chronic L. (Viannia) panamensis infection and the heterologous DNA prime - modified vaccinia virus Ankara (MVA) boost vaccination modality, we examined whether the conserved vaccine candidate antigen tryparedoxin peroxidase (TRYP) could provide protection against infection/disease.

Results

Heterologous prime - boost (DNA/MVA) vaccination utilizing TRYP antigen can provide protection against disease caused by L. (V.) panamensis. However, protection is dependent on modulating the innate immune response using the TLR1/2 agonist Pam3CSK4 during DNA priming. Prime-boost vaccination using DNA alone fails to protect. Prior to infection protectively vaccinated mice exhibit augmented CD4 and CD8 IFN? and memory responses as well as decreased IL-10 and IL-13 responses. IL-13 and IL-10 have been shown to be independently critical for disease in this model. CD8 T cells have an essential role in mediating host defense, as CD8 depletion reversed protection in the vaccinated mice; vaccinated mice depleted of CD4 T cells remained protected. Hence, vaccine-induced protection is dependent upon TLR1/2 activation instructing the generation of antigen specific CD8 cells and restricting IL-13 and IL-10 responses.

Conclusions

Given the general effectiveness of prime-boost vaccination, the recalcitrance of Leishmania (Viannia) to vaccine approaches effective against other species of Leishmania is again evident. However, prime-boost vaccination modality can with modulation induce protective responses, indicating that the delivery system is critical. Moreover, these results suggest that CD8 T cells should be targeted for the development of a vaccine against infection caused by Leishmania (Viannia) parasites. Further, TLR1/2 modulation may be useful in vaccines where CD8 T cell responses are critical.

SUBMITTER: Jayakumar A 

PROVIDER: S-EPMC3114751 | biostudies-literature | 2011 Jun

REPOSITORIES: biostudies-literature

altmetric image

Publications

TLR1/2 activation during heterologous prime-boost vaccination (DNA-MVA) enhances CD8+ T Cell responses providing protection against Leishmania (Viannia).

Jayakumar Asha A   Castilho Tiago M TM   Park Esther E   Goldsmith-Pestana Karen K   Blackwell Jenefer M JM   McMahon-Pratt Diane D  

PLoS neglected tropical diseases 20110614 6


<h4>Background</h4>Leishmania (Viannia) parasites present particular challenges, as human and murine immune responses to infection are distinct from other Leishmania species, indicating a unique interaction with the host. Further, vaccination studies utilizing small animal models indicate that modalities and antigens that prevent infection by other Leishmania species are generally not protective.<h4>Methodology</h4>Using a newly developed mouse model of chronic L. (Viannia) panamensis infection  ...[more]

Similar Datasets

| S-EPMC10688363 | biostudies-literature
| S-EPMC7658660 | biostudies-literature
| S-EPMC7047160 | biostudies-literature
| S-EPMC7079952 | biostudies-literature
| S-EPMC7974551 | biostudies-literature
| S-EPMC8754745 | biostudies-literature
| S-EPMC98670 | biostudies-literature
| S-EPMC5604745 | biostudies-literature
| S-EPMC10386405 | biostudies-literature
| S-EPMC5915591 | biostudies-literature