Characterization and expression of cytochrome P4501A in Atlantic sturgeon and shortnose sturgeon experimentally exposed to coplanar PCB 126 and TCDD.
Ontology highlight
ABSTRACT: The AHR pathway activates transcription of CYP1A and mediates most toxic responses from exposure to halogenated aromatic hydrocarbon contaminants such as PCBs and PCDD/Fs. Therefore, expression of CYP1A is predictive of most higher level toxic responses from these chemicals. To date, no study had developed an assay to quantify CYP1A expression in any sturgeon species. We addressed this deficiency by partially characterizing CYP1A in Atlantic sturgeon (Acipenser oxyrinchus oxyrinchus) and shortnose sturgeon (Acipenser brevirostrum) and then used derived sturgeon sequences to develop reverse transcriptase (RT)-PCR assays to quantify CYP1A mRNA expression in TCDD and PCB126 treated early life-stages of both species. Phylogenetic analysis of CYP1A, CYP1B, CYP1C and CYP3A deduced amino acid sequences from other fishes and sturgeons revealed that our putative Atlantic sturgeon and shortnose sturgeon CYP1A sequences most closely clustered with previously derived CYP1A sequences. We then used semi-quantitative and real-time RT-PCR to measure CYP1A mRNA levels in newly hatched Atlantic sturgeon and shortnose sturgeon larvae that were exposed to graded doses of waterborne PCB126 (0.01-1000 parts per billion (ppb)) and TCDD (0.001-10 ppb). We initially observed significant induction of CYP1A mRNA compared to vehicle control at the lowest doses of PCB126 and TCDD used, 0.01 ppb and 0.001 ppb, respectively. Significant induction was observed at all doses of both chemicals although lower expression was seen at the highest doses. We also compared CYP1A expression among tissues of i.p. injected shortnose sturgeon and found significant inducibility in heart, intestine, and liver, but not in blood, gill, or pectoral fin clips. For the first time, our results indicate that young life-stages of sturgeons are sensitive to AHR ligands at environmentally relevant concentrations, however, it is yet to be determined if induction of CYP1A can be used as a biomarker in environmental biomonitoring.
SUBMITTER: Roy NK
PROVIDER: S-EPMC3119503 | biostudies-literature | 2011 Jul
REPOSITORIES: biostudies-literature
ACCESS DATA