Unknown

Dataset Information

0

BUBR1 and closed MAD2 (C-MAD2) interact directly to assemble a functional mitotic checkpoint complex.


ABSTRACT: The mitotic checkpoint maintains genomic stability by ensuring that chromosomes are accurately segregated during mitosis. When the checkpoint is activated, the mitotic checkpoint complex (MCC), assembled from BUBR1, BUB3, CDC20, and MAD2, directly binds and inhibits the anaphase-promoting complex/cyclosome (APC/C) until all chromosomes are properly attached and aligned. The mechanisms underlying MCC assembly and MCC-APC/C interaction are not well characterized. Here, we show that a novel interaction between BUBR1 and closed MAD2 (C-MAD2) is essential for MCC-mediated inhibition of APC/C. Intriguingly, Arg(133) and Gln(134) in C-MAD2 are required for BUBR1 interaction. The same residues are also critical for MAD2 dimerization and MAD2 binding to p31(comet), a mitotic checkpoint silencing protein. Along with previously characterized BUBR1-CDC20 and C-MAD2-CDC20 interactions, our results underscore the integrity of the MCC for its activity and suggest the fundamental importance of the MAD2 ?C helix in modulating mitotic checkpoint activation and silencing.

SUBMITTER: Tipton AR 

PROVIDER: S-EPMC3122179 | biostudies-literature | 2011 Jun

REPOSITORIES: biostudies-literature

altmetric image

Publications

BUBR1 and closed MAD2 (C-MAD2) interact directly to assemble a functional mitotic checkpoint complex.

Tipton Aaron R AR   Wang Kexi K   Link Laura L   Bellizzi John J JJ   Huang Haomin H   Yen Tim T   Liu Song-Tao ST  

The Journal of biological chemistry 20110427 24


The mitotic checkpoint maintains genomic stability by ensuring that chromosomes are accurately segregated during mitosis. When the checkpoint is activated, the mitotic checkpoint complex (MCC), assembled from BUBR1, BUB3, CDC20, and MAD2, directly binds and inhibits the anaphase-promoting complex/cyclosome (APC/C) until all chromosomes are properly attached and aligned. The mechanisms underlying MCC assembly and MCC-APC/C interaction are not well characterized. Here, we show that a novel interac  ...[more]

Similar Datasets

| S-EPMC3266009 | biostudies-literature
| S-EPMC3713096 | biostudies-literature
| S-EPMC6343701 | biostudies-literature
| S-EPMC4170573 | biostudies-literature
| S-EPMC4210015 | biostudies-literature
| S-EPMC2064158 | biostudies-other
| S-EPMC4993431 | biostudies-literature
| S-EPMC5458268 | biostudies-literature
| S-EPMC3646864 | biostudies-other
| S-EPMC3267040 | biostudies-literature