Epitope-specific CD8+ T lymphocytes cross-recognize mutant simian immunodeficiency virus (SIV) sequences but fail to contain very early evolution and eventual fixation of epitope escape mutations during SIV infection.
Ontology highlight
ABSTRACT: Human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) evade containment by CD8(+) T lymphocytes through focused epitope mutations. However, because of limitations in the numbers of viral sequences that can be sampled, traditional sequencing technologies have not provided a true representation of the plasticity of these viruses or the intensity of CD8(+) T lymphocyte-mediated selection pressure. Moreover, the strategy by which CD8(+) T lymphocytes contain evolving viral quasispecies has not been characterized fully. In the present study we have employed ultradeep 454 pyrosequencing of virus and simultaneous staining of CD8(+) T lymphocytes with multiple tetramers in the SIV/rhesus monkey model to explore the coevolution of virus and the cellular immune response during primary infection. We demonstrated that cytotoxic T lymphocyte (CTL)-mediated selection pressure on the infecting virus was manifested by epitope mutations as early as 21 days following infection. We also showed that CD8(+) T lymphocytes cross-recognized wild-type and mutant epitopes and that these cross-reactive cell populations were present at a time when mutant forms of virus were present at frequencies of as low as 1 in 22,000 sequenced clones. Surprisingly, these cross-reactive cells became enriched in the epitope-specific CD8(+) T lymphocyte population as viruses with mutant epitope sequences largely replaced those with epitope sequences of the transmitted virus. These studies demonstrate that mutant epitope-specific CD8(+) T lymphocytes that are present at a time when viral mutant epitope sequences are detected at extremely low frequencies fail to contain the later accumulation and fixation of the mutant epitope sequences in the viral quasispecies.
SUBMITTER: Cale EM
PROVIDER: S-EPMC3126128 | biostudies-literature | 2011 Apr
REPOSITORIES: biostudies-literature
ACCESS DATA