Unknown

Dataset Information

0

FLIP (Flice-like inhibitory protein) suppresses cytoplasmic double-stranded-RNA-induced apoptosis and NF-?B and IRF3-mediated signaling.


ABSTRACT:

Background

Cytoplasmic viral double-stranded RNA (dsRNA) is detected by a class of ubiquitous cytoplasmic RNA helicases, retinoic acid inducible gene-I (RIG-I) and melanoma differentiation antigen-5 (MDA5), which initiate a signaling cascade via their common adaptor called interferon-? (IFN-?) promoter stimulator-1 (IPS-1). This leads to the production of proinflammatory and antiviral cytokines, the type I Interferons, via mainly nuclear factor kappa B (NF-?B) and interferon response factor-3 (IRF3) transcription factors. Fas-associated death domain (FADD) protein, receptor-interacting protein (RIP1), caspase-8 and tumor necrosis factor receptor (TNFR)-associated death domain (TRADD) protein, all traditionally associated with death receptor signaling, are also involved in RIG-I/MDA5 signaling pathway. We previously showed that FLIP (Flice-like inhibitory protein), also designated as cflar (CASP8 and FADD-like apoptosis regulator), negatively regulates lipopolysaccharide (LPS)-induced toll-like receptor 4 (TLR4) signaling in endothelial cells and mouse embryonic fibroblasts (MEFs) and protected against TLR4-mediated apoptosis.

Results

In this study, we investigated the role of FLIP in cellular response to cytoplasmic polyinosinic:polycytidylic acid, poly(I:C), a synthetic analog of dsRNA. Consistent with the previously described role of FADD in RIG-I/MDA5-mediated apoptosis, we found that FLIP-/- MEFs were more susceptible to killing by cytoplasmic poly(I:C). However, FLIP-/- MEFs also exhibited markedly increased expression of NF-?B-and IRF3- dependent genes in response to cytoplasmic poly(I:C). Importantly, reconstitution of FLIP in FLIP-/-MEFs reversed the hyper-activation of IRF3- and NF-?B-mediated gene expression. Further, we found that caspase-8 catalytic activity was not required for cytoplasmic poly(I:C)-mediated NF-?B and IRF3 signaling.

Conclusions

These results provide evidence for a crucial dual role for FLIP in antiviral responses to cytoplasmic dsRNA: it protects from cytoplasmic dsRNA-mediated cell death while down-regulating IRF3-and NF-?B-mediated gene expression. Since the pathogenesis of several viral infections involves a heightened and dysregulated cytokine response, a possible therapy could involve modulating FLIP levels.

SUBMITTER: Handa P 

PROVIDER: S-EPMC3129316 | biostudies-literature | 2011 Jun

REPOSITORIES: biostudies-literature

altmetric image

Publications

FLIP (Flice-like inhibitory protein) suppresses cytoplasmic double-stranded-RNA-induced apoptosis and NF-κB and IRF3-mediated signaling.

Handa Priya P   Tupper Joan C JC   Jordan Katherine C KC   Harlan John M JM  

Cell communication and signaling : CCS 20110602


<h4>Background</h4>Cytoplasmic viral double-stranded RNA (dsRNA) is detected by a class of ubiquitous cytoplasmic RNA helicases, retinoic acid inducible gene-I (RIG-I) and melanoma differentiation antigen-5 (MDA5), which initiate a signaling cascade via their common adaptor called interferon-β (IFN-β) promoter stimulator-1 (IPS-1). This leads to the production of proinflammatory and antiviral cytokines, the type I Interferons, via mainly nuclear factor kappa B (NF-κB) and interferon response fac  ...[more]

Similar Datasets

| S-EPMC5548913 | biostudies-literature
| S-EPMC4306727 | biostudies-literature