Unknown

Dataset Information

0

Phosphatidylinositol-3-kinase gamma plays a central role in blood-brain barrier dysfunction in acute experimental stroke.


ABSTRACT: Phosphoinositide 3-kinase (PI3K)-? is linked to inflammation and oxidative stress. This study was conducted to investigate the role of the PI3K? in the blood-brain barrier dysfunction and brain damage induced by focal cerebral ischemia/reperfusion.Wild-type and PI3K? knockout mice were subjected to middle cerebral artery occlusion (60 minutes) followed by reperfusion. Evans blue leakage, brain edema, infarct volumes, and neurological deficits were examined. Oxidative stress, neutrophil infiltration, and matrix metallopeptidase-9 were assessed. Activation of nuclear factor-?B and expression of proinflammatory and pro-oxidative genes were studied.PI3K? deficiency significantly reduced blood-brain barrier permeability and brain edema formation, which were time-dependently correlated with preventing the degradation of the tight junction protein, claudin-5, and the basal lamina protein, collagen IV, and the phosphorylation of myosin light chain in brain microvessels. PI3K? deficiency suppressed ischemia/reperfusion-induced nuclear factor-?B p65 (Ser536) phosphorylation and the expression of the pro-oxidant enzyme NADPH oxidase (Nox1, Nox2, and Nox4) and proinflammatory adhesion molecules (E- and P-selectin, intercellular adhesion molecule-1) at different time points. These molecular changes were associated with significant inhibition of oxidative stress (superoxide production and malondialdehyde content), neutrophil infiltration, and matrix metallopeptidase-9 expression/activity in PI3K? knockout mice. Eventually, PI3K? deficiency significantly reduced infarct volumes and neurological scores at 24 hours after ischemia/reperfusion.Our results provide the first direct demonstration that PI3K? plays a significant role in ischemia/reperfusion-induced blood-brain barrier disruption and brain damage. Future studies need to explore PI3K? as a potential target for stroke therapy.

SUBMITTER: Jin R 

PROVIDER: S-EPMC3129812 | biostudies-literature | 2011 Jul

REPOSITORIES: biostudies-literature

altmetric image

Publications

Phosphatidylinositol-3-kinase gamma plays a central role in blood-brain barrier dysfunction in acute experimental stroke.

Jin Rong R   Song Zifang Z   Yu Shiyong S   Piazza Abigail A   Nanda Anil A   Penninger Josef M JM   Granger D Neil DN   Li Guohong G  

Stroke 20110505 7


<h4>Background and purpose</h4>Phosphoinositide 3-kinase (PI3K)-γ is linked to inflammation and oxidative stress. This study was conducted to investigate the role of the PI3Kγ in the blood-brain barrier dysfunction and brain damage induced by focal cerebral ischemia/reperfusion.<h4>Methods</h4>Wild-type and PI3Kγ knockout mice were subjected to middle cerebral artery occlusion (60 minutes) followed by reperfusion. Evans blue leakage, brain edema, infarct volumes, and neurological deficits were e  ...[more]

Similar Datasets

| S-EPMC4361544 | biostudies-literature
| S-EPMC8446221 | biostudies-literature
| S-EPMC6110873 | biostudies-literature
| S-EPMC7146617 | biostudies-literature
| S-EPMC3496669 | biostudies-literature
| S-EPMC4673693 | biostudies-literature
| S-EPMC2805293 | biostudies-other
2014-04-29 | E-GEOD-44694 | biostudies-arrayexpress
| S-EPMC7468510 | biostudies-literature
| S-EPMC3767524 | biostudies-literature