Ontology highlight
ABSTRACT: Background and purpose
Increased pulmonary vascular remodelling, pulmonary arterial pressure and pulmonary vascular resistance characterize the development of pulmonary arterial hypertension (PAH). Activation of the Raf/mitogen-activated protein kinase/extracellular signal-regulated kinase (ERK)1/2 is thought to play an important role in PAH and Raf-1 kinase inhibitor protein (RKIP), negatively regulates this pathway. This study investigated whether genetic deletion of RKIP (and hence ERK1/2 up-regulation) resulted in a pulmonary hypertensive phenotype in mice and investigated a role for RKIP in mitogen-regulated proliferative responses in lung fibroblasts.Experimental approach
Pulmonary vascular haemodynamics and remodelling were assessed in mice genetically deficient in RKIP (RKIP-/-) after 2 weeks of either normoxia or hypoxia. Immunoblotting and immunohistochemistry were used to examine phosphorylation of Raf-1, RKIP and ERK1/2 in mouse pulmonary arteries. In vitro, RKIP inhibition of mitogen signalling was analysed in CCL39 hamster lung fibroblasts.Key results
RKIP-/- mice demonstrated elevated indices of PAH and ERK1/2 phosphorylation compared with wild-type (WT) mice. Hypoxic RKIP-/- mice exhibited exaggerated PAH indices. Hypoxia increased phosphorylation of Raf-1, RKIP and ERK1/2 in WT mouse pulmonary arteries and Raf-1 phosphorylation in RKIP-/- mouse pulmonary arteries. In CCL39 cells, inhibition of RKIP potentiated mitogen-induced proliferation and phosphorylation of RKIP, and Raf-1.Conclusions and implications
The lack of RKIP protein resulted in a pulmonary hypertensive phenotype, exaggerated in hypoxia. Hypoxia induced phosphorylation of RKIP signalling elements in WT pulmonary arteries. RKIP inhibition potentiated mitogen-induced proliferation in lung fibroblasts. These results provide evidence for the involvement of RKIP in suppressing the development of hypoxia-induced PAH in mice.
SUBMITTER: Morecroft I
PROVIDER: S-EPMC3130942 | biostudies-literature |
REPOSITORIES: biostudies-literature