Kinship, greenbeards, and runaway social selection in the evolution of social insect cooperation.
Ontology highlight
ABSTRACT: Social Hymenoptera have played a leading role in development and testing of kin selection theory. Inclusive fitness models, following from Hamilton's rule, successfully predict major life history characteristics, such as biased sex investment ratios and conflict over parentage of male offspring. However, kin selection models poorly predict patterns of caste-biasing nepotism and reproductive skew within groups unless kin recognition constraints or group-level selection is also invoked. These successes and failures mirror the underlying kin recognition mechanisms. With reliable environmental cues, such as the sex of offspring or the origin of male eggs, predictions are supported. When only genetic recognition cues are potentially available, predictions are not supported. Mathematical simulations demonstrate that these differing mechanisms for determining kinship produce very different patterns of behavior. Decisions based on environmental cues for relatedness result in a robust mixture of cooperation and noncooperation depending on whether or not Hamilton's rule is met. In contrast, cooperation evolves under a wider range of conditions and to higher frequencies with genetic kin recognition as shared greenbeard traits. This "excess of niceness" matches the existing patterns in caste bias and reproductive skew; individuals often help others at an apparent cost to their inclusive fitness. The results further imply a potential for greenbeard-type kin recognition to create arbitrary runaway social selection for shared genetic traits. Suggestive examples in social evolution may be alloparental care and unicoloniality in ants. Differences in kin recognition mechanisms also can have consequences for maintenance of advantageous genetic diversity within populations.
SUBMITTER: Nonacs P
PROVIDER: S-EPMC3131811 | biostudies-literature | 2011 Jun
REPOSITORIES: biostudies-literature
ACCESS DATA