Unknown

Dataset Information

0

The role of photon scattering in voltage-calcium fluorescent recordings of ventricular fibrillation.


ABSTRACT: Recent optical mapping studies of cardiac tissue suggest that membrane voltage (V(m)) and intracellular calcium concentrations (Ca) become dissociated during ventricular fibrillation (VF), generating a proarrhythmic substrate. However, experimental methods used in these studies may accentuate measured dissociation due to differences in fluorescent emission wavelengths of optical voltage/calcium (V(opt)/Ca(opt)) signals. Here, we simulate dual voltage-calcium optical mapping experiments using a monodomain-Luo-Rudy ventricular-tissue model coupled to a photon-diffusion model. Dissociation of both electrical, V(m)/Ca, and optical, V(opt)/Ca(opt), signals is quantified by calculating mutual information (MI) for VF and rapid pacing protocols. We find that photon scattering decreases MI of V(opt)/Ca(opt) signals by 23% compared to unscattered V(m)/Ca signals during VF. Scattering effects are amplified by increasing wavelength separation between fluorescent voltage/calcium signals and respective measurement-location misalignment. In contrast, photon scattering does not affect MI during rapid pacing, but high calcium dye affinity can decrease MI by attenuating alternans in Ca(opt) but not in V(opt). We conclude that some dissociation exists between voltage and calcium at the cellular level during VF, but MI differences are amplified by current optical mapping methods.

SUBMITTER: Bishop MJ 

PROVIDER: S-EPMC3136771 | biostudies-literature | 2011 Jul

REPOSITORIES: biostudies-literature

altmetric image

Publications

The role of photon scattering in voltage-calcium fluorescent recordings of ventricular fibrillation.

Bishop Martin J MJ   Rowley Alexander A   Rodriguez Blanca B   Plank Gernot G   Gavaghan David J DJ   Bub Gil G  

Biophysical journal 20110701 2


Recent optical mapping studies of cardiac tissue suggest that membrane voltage (V(m)) and intracellular calcium concentrations (Ca) become dissociated during ventricular fibrillation (VF), generating a proarrhythmic substrate. However, experimental methods used in these studies may accentuate measured dissociation due to differences in fluorescent emission wavelengths of optical voltage/calcium (V(opt)/Ca(opt)) signals. Here, we simulate dual voltage-calcium optical mapping experiments using a m  ...[more]

Similar Datasets

| S-EPMC6516663 | biostudies-literature
| S-EPMC8632658 | biostudies-literature
| S-EPMC2137164 | biostudies-literature
| S-EPMC5755501 | biostudies-literature
| S-EPMC9992766 | biostudies-literature
| S-EPMC2884582 | biostudies-literature
| S-EPMC5351779 | biostudies-literature
| S-EPMC3086382 | biostudies-literature
| S-EPMC4624957 | biostudies-literature
| S-EPMC10680948 | biostudies-literature