Unknown

Dataset Information

0

A novel GC-MS method in urinary estrogen analysis from postmenopausal women with osteoporosis.


ABSTRACT: Estrogen metabolites play important roles in the development of female-related disorders and homeostasis of the bone. To improve detectability, a validated gas chromatography-mass spectrometry (GC-MS) method was conducted with two-phase extractive ethoxycarbonlyation (EOC) and subsequent pentafluoropropionyl (PFP) derivatization was introduced. The resulting samples were separated through a high-temperature MXT-1 column within an 8 min run and were detected in the selected ion monitoring (SIM) mode. The optimized analytical conditions led to good separation with a symmetric peak shape for 19 estrogens as their EOC-PFP derivatives. The limit of quantification (LOQ) was from 0.02 to ?0.1 ng/ml for most estrogens analyzed, except for 2-hydroxyestriol (0.5 ng/ml). The devised method was found to be linear (r² > 0.995) in the range from the LOQ to 40 ng/ml, whereas the precision (% CV) and accuracy (% bias) ranged from 1.4 to 10.5% and from 91.4 to 108.5%, respectively. The good sensitivity and selectivity of this method even allowed quantification of the estrogen metabolites in urine samples obtained from the postmenopausal female patients with osteoporosis. The present technique can be useful for clinical diagnosis as well as to better understand the pathogenesis of estrogen-related disorders in low-level quantification.

SUBMITTER: Moon JY 

PROVIDER: S-EPMC3137026 | biostudies-literature | 2011 Aug

REPOSITORIES: biostudies-literature

altmetric image

Publications

A novel GC-MS method in urinary estrogen analysis from postmenopausal women with osteoporosis.

Moon Ju-Yeon JY   Kim Kwang Joon KJ   Moon Myeong Hee MH   Chung Bong Chul BC   Choi Man Ho MH  

Journal of lipid research 20110521 8


Estrogen metabolites play important roles in the development of female-related disorders and homeostasis of the bone. To improve detectability, a validated gas chromatography-mass spectrometry (GC-MS) method was conducted with two-phase extractive ethoxycarbonlyation (EOC) and subsequent pentafluoropropionyl (PFP) derivatization was introduced. The resulting samples were separated through a high-temperature MXT-1 column within an 8 min run and were detected in the selected ion monitoring (SIM) m  ...[more]

Similar Datasets

| S-BSST1138 | biostudies-other
| S-EPMC10579216 | biostudies-literature
| S-EPMC7882395 | biostudies-literature
| S-EPMC7989015 | biostudies-literature
| S-EPMC6904657 | biostudies-literature
| S-EPMC6661742 | biostudies-literature
| S-EPMC6150952 | biostudies-literature
| S-EPMC10115689 | biostudies-literature
| S-EPMC7036967 | biostudies-literature
| S-EPMC5400539 | biostudies-literature