Analysis of a single-stranded DNA-scanning process in which activation-induced deoxycytidine deaminase (AID) deaminates C to U haphazardly and inefficiently to ensure mutational diversity.
Ontology highlight
ABSTRACT: Enzymes that scan single-stranded (ss) DNA have been studied far less extensively than those that scan double-stranded (ds) DNA. Activation-induced deoxycytidine deaminase (AID) deaminates C to U on single-stranded DNA to initiate immunological diversity. Except for processive deaminations favoring WRC hot motifs (W = (A/T) and R = (G/C)), the rules governing AID scanning remain vague. Here, we examine the patterns of deaminations on naked single-stranded DNA and during transcription of dsDNA by embedding cassettes containing combinations of motifs within a lacZ mutational reporter gene. Deaminations arise randomly, spatially distributed as isolated events and in clusters. The deamination frequency depends on the motif and its surrounding sequence. We propose a random walk model that fits the data well, having a deamination probability of 1-7% per motif encounter. We suggest that inefficient, haphazard deamination produces antibody diversity associated with AID.
SUBMITTER: Pham P
PROVIDER: S-EPMC3137067 | biostudies-literature |
REPOSITORIES: biostudies-literature
ACCESS DATA