Unknown

Dataset Information

0

Specificity of synaptic connectivity between layer 1 inhibitory interneurons and layer 2/3 pyramidal neurons in the rat neocortex.


ABSTRACT: Understanding the structure and function of the neocortical microcircuit requires a description of the synaptic connectivity between identified neuronal populations. Here, we investigate the electrophysiological properties of layer 1 (L1) neurons of the rat somatosensory neocortex (postnatal day 24-36) and their synaptic connectivity with supragranular pyramidal neurons. The active and passive properties of visually identified L1 neurons (n = 266) suggested division into 4 groups according to the Petilla classification scheme with characteristics of neurogliaform cells (NGFCs) (n = 72), classical-accommodating (n = 137), fast-spiking (n = 23), and burst-spiking neurons (n = 34). Anatomical reconstructions of L1 neurons supported the existence of 4 major neuronal groups. Multiparameter unsupervised cluster analysis confirmed the existence of 4 groups, revealing a high degree of similarity with the Petilla scheme. Simultaneous recordings between synaptically connected L1 neurons and L2/3 pyramidal neurons (n = 384) demonstrated neuronal class specificity in both excitatory and inhibitory connectivity and the properties of synaptic potentials. Notably, all groups of L1 neurons received monosynaptic excitatory input from L2/3 pyramidal neurons (n = 33), with the exception of NGFCs (n = 68 pairs tested). In contrast, NGFCs strongly inhibited L2/3 pyramidal neurons (n = 12 out 27 pairs tested). These data reveal a high specificity of excitatory and inhibitory connections in the superficial layers of the neocortex.

SUBMITTER: Wozny C 

PROVIDER: S-EPMC3138515 | biostudies-literature | 2011 Aug

REPOSITORIES: biostudies-literature

altmetric image

Publications

Specificity of synaptic connectivity between layer 1 inhibitory interneurons and layer 2/3 pyramidal neurons in the rat neocortex.

Wozny Christian C   Williams Stephen R SR  

Cerebral cortex (New York, N.Y. : 1991) 20110110 8


Understanding the structure and function of the neocortical microcircuit requires a description of the synaptic connectivity between identified neuronal populations. Here, we investigate the electrophysiological properties of layer 1 (L1) neurons of the rat somatosensory neocortex (postnatal day 24-36) and their synaptic connectivity with supragranular pyramidal neurons. The active and passive properties of visually identified L1 neurons (n = 266) suggested division into 4 groups according to th  ...[more]

Similar Datasets

| S-EPMC5390487 | biostudies-literature
| S-EPMC7727376 | biostudies-literature
| S-EPMC3086675 | biostudies-literature
| S-EPMC6759021 | biostudies-literature
| S-EPMC2724330 | biostudies-literature
| S-EPMC2858667 | biostudies-literature