Arrested oligodendrocyte lineage maturation in chronic perinatal white matter injury.
Ontology highlight
ABSTRACT: Abnormal myelination is a major pathological sequela of chronic periventricular white matter injury in survivors of premature birth. We tested the hypothesis that myelination failure in chronic hypoxia-ischemia-induced periventricular white matter injury is related to persistent depletion of the oligodendrocyte (OL) precursor pool required to generate mature myelinating OLs.A neonatal rat model of hypoxia-ischemia was used where acute degeneration of late OL progenitors (preOLs) occurs via a mostly caspase-independent mechanism. The fate of OL lineage cells in chronic cerebral lesions was defined with OL lineage-specific markers.Acute caspase-3-independent preOL degeneration from hypoxia-ischemia was significantly augmented by delayed preOL death that was caspase-3-dependent. Degeneration of preOLs was offset by a robust regenerative response that resulted in a several-fold expansion in the pool of surviving preOLs in chronic lesions. However, these preOLs displayed persistent maturation arrest with failure to differentiate and generate myelin. When preOL-rich chronic lesions sustained recurrent hypoxia-ischemia at a time in development when white matter is normally resistant to injury, an approximately 10-fold increase in caspase-dependent preOL degeneration occurred relative to lesions caused by a single episode of hypoxia-ischemia.The mechanism of myelination failure in chronic white matter lesions is related to a combination of delayed preOL degeneration and preOL maturation arrest. The persistence of a susceptible population of preOLs renders chronic white matter lesions markedly more vulnerable to recurrent hypoxia-ischemia. These data suggest that preOL maturation arrest may predispose to more severe white matter injury in preterm survivors that sustain recurrent hypoxia-ischemia.
SUBMITTER: Segovia KN
PROVIDER: S-EPMC3140464 | biostudies-literature | 2008 Apr
REPOSITORIES: biostudies-literature
ACCESS DATA