Unknown

Dataset Information

0

Microfluidic fluorescence in situ hybridization and flow cytometry (?FlowFISH).


ABSTRACT: We describe an integrated microfluidic device (?FlowFISH) capable of performing 16S rRNA fluorescence in situ hybridization (FISH) followed by flow cytometric detection for identifying bacteria in natural microbial communities. The device was used for detection of species involved in bioremediation of Cr(vi) and other metals in groundwater samples from a highly-contaminated environmental site (Hanford, WA, USA). The ?FlowFISH seamlessly integrates two components: a hybridization chamber formed between two photopolymerized membranes, where cells and probes are electrophoretically loaded, incubated and washed, and a downstream cross structure for electrokinetically focusing cells into a single-file flow for flow cytometry analysis. The device is capable of analyzing a wide variety of bacteria including aerobic, facultative and anaerobic bacteria and was initially tested and validated using cultured microbes, including Escherichia coli, as well as two strains isolated from Hanford site: Desulfovibrio vulgaris strain RCH1, and Pseudomonas sp.strain RCH2 that are involved in Cr(vi) reduction and immobilization. Combined labeling and detection efficiencies of 74-97% were observed in experiments with simple mixtures of cultured cells, confirming specific labeling. Results obtained were in excellent agreement with those obtained by conventional flow cytometry confirming the accuracy of ?FlowFISH. Finally, the device was used for analyzing water samples collected on different dates from the Hanford site. We were able to monitor the numbers of Pseudomonas sp. with only 100-200 cells loaded into the microchip. The ?FlowFISH approach provides an automated platform for quantitative detection of microbial cells from complex samples, and is ideally suited for analysis of precious samples with low cell numbers such as those found at extreme environmental niches, bioremediation sites, and the human microbiome.

SUBMITTER: Liu P 

PROVIDER: S-EPMC3145043 | biostudies-literature | 2011 Aug

REPOSITORIES: biostudies-literature

altmetric image

Publications

Microfluidic fluorescence in situ hybridization and flow cytometry (μFlowFISH).

Liu Peng P   Meagher Robert J RJ   Light Yooli K YK   Yilmaz Suzan S   Chakraborty Romy R   Arkin Adam P AP   Hazen Terry C TC   Singh Anup K AK  

Lab on a chip 20110714 16


We describe an integrated microfluidic device (μFlowFISH) capable of performing 16S rRNA fluorescence in situ hybridization (FISH) followed by flow cytometric detection for identifying bacteria in natural microbial communities. The device was used for detection of species involved in bioremediation of Cr(vi) and other metals in groundwater samples from a highly-contaminated environmental site (Hanford, WA, USA). The μFlowFISH seamlessly integrates two components: a hybridization chamber formed b  ...[more]

Similar Datasets

| S-EPMC4350577 | biostudies-literature
| S-EPMC6495755 | biostudies-literature
| S-EPMC3255644 | biostudies-literature
| S-EPMC522093 | biostudies-literature
| S-EPMC4384178 | biostudies-literature
| S-EPMC5548662 | biostudies-other
| S-EPMC1489643 | biostudies-literature
| S-EPMC6368374 | biostudies-literature
| S-EPMC4249028 | biostudies-literature
| S-EPMC3585268 | biostudies-literature