The effects of 5-aza-2'- deoxycytidine and trichostatin A on gene expression and DNA methylation status in cloned bovine blastocysts.
Ontology highlight
ABSTRACT: We previously found that treatment of both donor cells and early cloned embryos with combination of 5-aza-2'-deoxycytidine (5-aza-dC) and trichostatin A (TSA) significantly improve the in vitro and full-term development of nuclear transfer (NT) bovine embryos. To investigate how this treatment improved the epigenetic reprogramming of somatic cell nuclei, we compared the expression levels of DNA methylation-, chromatin structure-, and development-related genes in in vitro fertilized (IVF group), NT (C-NT group), and 5-aza-dC and TSA-treated NT (T-NT group) single blastocyst using quantitative real-time PCR. We also compared the DNA methylation status of satellite I among three groups using bisulfite sequencing analysis and combined bisulfite restriction analysis (COBRA). There were significantly lower levels of DNMT1, DNMT3b, HDAC2, and IGF2 transcripts in T-NT blastocysts than in C-NT blastocysts, whereas the relative abundance of OCT4 and SOX2 mRNA was significantly increased in T-NT blastocysts compared to C-NT blastocysts. In addition, the treatment also reduced the DNA methylation levels of NT blastocysts on satellite I sequence. It is likely that TSA may act synergistically with 5-aza-dC to exert such modifications in gene expression and DNA methylation, subsequently enhancing developmental potential (in vitro and full-term) of treated cloned embryos.
SUBMITTER: Wang Y
PROVIDER: S-EPMC3146745 | biostudies-literature | 2011 Aug
REPOSITORIES: biostudies-literature
ACCESS DATA