Multiplicity of 3-Ketosteroid-9?-Hydroxylase enzymes in Rhodococcus rhodochrous DSM43269 for specific degradation of different classes of steroids.
Ontology highlight
ABSTRACT: The well-known large catabolic potential of rhodococci is greatly facilitated by an impressive gene multiplicity. This study reports on the multiplicity of kshA, encoding the oxygenase component of 3-ketosteroid 9?-hydroxylase, a key enzyme in steroid catabolism. Five kshA homologues (kshA1 to kshA5) were previously identified in Rhodococcus rhodochrous DSM43269. These KshA(DSM43269) homologues are distributed over several phylogenetic groups. The involvement of these KshA homologues in the catabolism of different classes of steroids, i.e., sterols, pregnanes, androstenes, and bile acids, was investigated. Enzyme activity assays showed that all KSH enzymes with KshA(DSM43269) homologues are C-9 ?-hydroxylases acting on a wide range of 3-ketosteroids, but not on 3-hydroxysteroids. KshA5 appeared to be the most versatile enzyme, with the broadest substrate range but without a clear substrate preference. In contrast, KshA1 was found to be dedicated to cholic acid catabolism. Transcriptional analysis and functional complementation studies revealed that kshA5 supported growth on any of the different classes of steroids tested, consistent with its broad expression induction pattern. The presence of multiple kshA genes in the R. rhodochrous DSM43269 genome, each displaying unique steroid induction patterns and substrate ranges, appears to facilitate a dynamic and fine-tuned steroid catabolism, with C-9 ?-hydroxylation occurring at different levels during microbial steroid degradation.
SUBMITTER: Petrusma M
PROVIDER: S-EPMC3147496 | biostudies-literature | 2011 Aug
REPOSITORIES: biostudies-literature
ACCESS DATA