Unknown

Dataset Information

0

Global analysis of proline-rich tandem repeat proteins reveals broad phylogenetic diversity in plant secretomes.


ABSTRACT: Cell walls, constructed by precisely choreographed changes in the plant secretome, play critical roles in plant cell physiology and development. Along with structural polysaccharides, secreted proline-rich Tandem Repeat Proteins (TRPs) are important for cell wall function, yet the evolutionary diversity of these structural TRPs remains virtually unexplored. Using a systems-level computational approach to analyze taxonomically diverse plant sequence data, we identified 31 distinct Pro-rich TRP classes targeted for secretion. This analysis expands upon the known phylogenetic diversity of extensins, the most widely studied class of wall structural proteins, and demonstrates that extensins evolved before plant vascularization. Our results also show that most Pro-rich TRP classes have unexpectedly restricted evolutionary distributions, revealing considerable differences in plant secretome signatures that define unexplored diversity.

SUBMITTER: Newman AM 

PROVIDER: S-EPMC3149072 | biostudies-literature | 2011

REPOSITORIES: biostudies-literature

altmetric image

Publications

Global analysis of proline-rich tandem repeat proteins reveals broad phylogenetic diversity in plant secretomes.

Newman Aaron M AM   Cooper James B JB  

PloS one 20110802 8


Cell walls, constructed by precisely choreographed changes in the plant secretome, play critical roles in plant cell physiology and development. Along with structural polysaccharides, secreted proline-rich Tandem Repeat Proteins (TRPs) are important for cell wall function, yet the evolutionary diversity of these structural TRPs remains virtually unexplored. Using a systems-level computational approach to analyze taxonomically diverse plant sequence data, we identified 31 distinct Pro-rich TRP cl  ...[more]

Similar Datasets

| S-EPMC6366627 | biostudies-literature
| S-EPMC3268530 | biostudies-literature
| S-EPMC3258263 | biostudies-literature
| S-EPMC3036893 | biostudies-other
| S-EPMC3691130 | biostudies-literature
| S-EPMC86479 | biostudies-literature
| S-EPMC9122939 | biostudies-literature
| S-EPMC7504531 | biostudies-literature
| S-EPMC6017362 | biostudies-literature
| S-EPMC187567 | biostudies-literature