Unknown

Dataset Information

0

Disruption of a novel Kruppel-like transcription factor p300-regulated pathway for insulin biosynthesis revealed by studies of the c.-331 INS mutation found in neonatal diabetes mellitus.


ABSTRACT: Krüppel-like transcription factors (KLFs) have elicited significant attention because of their regulation of essential biochemical pathways and, more recently, because of their fundamental role in the mechanisms of human diseases. Neonatal diabetes mellitus is a monogenic disorder with primary alterations in insulin secretion. We here describe a key biochemical mechanism that underlies neonatal diabetes mellitus insulin biosynthesis impairment, namely a homozygous mutation within the insulin gene (INS) promoter, c.-331C>G, which affects a novel KLF-binding site. The combination of careful expression profiling, electromobility shift assays, reporter experiments, and chromatin immunoprecipitation demonstrates that, among 16 different KLF proteins tested, KLF11 is the most reliable activator of this site. Congruently, the c.-331C>G INS mutation fails to bind KLF11, thus inhibiting activation by this transcription factor. Klf11(-/-) mice recapitulate the disruption in insulin production and blood levels observed in patients. Thus, these data demonstrate an important role for KLF11 in the regulation of INS transcription via the novel c.-331 KLF site. Lastly, our screening data raised the possibility that other members of the KLF family may also regulate this promoter under distinct, yet unidentified, cellular contexts. Collectively, this study underscores a key role for KLF proteins in biochemical mechanisms of human diseases, in particular, early infancy onset diabetes mellitus.

SUBMITTER: Bonnefond A 

PROVIDER: S-EPMC3151084 | biostudies-literature | 2011 Aug

REPOSITORIES: biostudies-literature

altmetric image

Publications

Disruption of a novel Kruppel-like transcription factor p300-regulated pathway for insulin biosynthesis revealed by studies of the c.-331 INS mutation found in neonatal diabetes mellitus.

Bonnefond Amélie A   Lomberk Gwen G   Buttar Navtej N   Busiah Kanetee K   Vaillant Emmanuel E   Lobbens Stéphane S   Yengo Loïc L   Dechaume Aurélie A   Mignot Brigitte B   Simon Albane A   Scharfmann Raphaël R   Neve Bernadette B   Tanyolaç Sinan S   Hodoglugil Ugur U   Pattou François F   Cavé Hélène H   Iovanna Juan J   Stein Roland R   Polak Michel M   Vaxillaire Martine M   Froguel Philippe P   Urrutia Raul R  

The Journal of biological chemistry 20110518 32


Krüppel-like transcription factors (KLFs) have elicited significant attention because of their regulation of essential biochemical pathways and, more recently, because of their fundamental role in the mechanisms of human diseases. Neonatal diabetes mellitus is a monogenic disorder with primary alterations in insulin secretion. We here describe a key biochemical mechanism that underlies neonatal diabetes mellitus insulin biosynthesis impairment, namely a homozygous mutation within the insulin gen  ...[more]

Similar Datasets

| S-EPMC6672029 | biostudies-literature
| S-EPMC2840338 | biostudies-literature
| S-EPMC9063464 | biostudies-literature
| S-EPMC2528857 | biostudies-literature
| S-EPMC7554616 | biostudies-literature
| S-EPMC9017997 | biostudies-literature
| S-EPMC5361503 | biostudies-literature
| S-EPMC3464543 | biostudies-literature
| S-EPMC4118223 | biostudies-literature
| S-EPMC5499249 | biostudies-literature