Unique properties of muscularis mucosae smooth muscle in guinea pig urinary bladder.
Ontology highlight
ABSTRACT: The muscularis mucosae, a type of smooth muscle located between the urothelium and the urinary bladder detrusor, has been described, although its properties and role in bladder function have not been characterized. Here, using mucosal tissue strips isolated from guinea pig urinary bladders, we identified spontaneous phasic contractions (SPCs) that appear to originate in the muscularis mucosae. This smooth muscle layer exhibited Ca(2+) waves and flashes, but localized Ca(2+) events (Ca(2+) sparks, purinergic receptor-mediated transients) were not detected. Ca(2+) flashes, often in bursts, occurred with a frequency (?5.7/min) similar to that of SPCs (?4/min), suggesting that SPCs are triggered by bursts of Ca(2+) flashes. The force generated by a single mucosal SPC represented the maximal force of the strip, whereas a single detrusor SPC was ?3% of maximal force of the detrusor strip. Electrical field stimulation (0.5-50 Hz) evoked force transients in isolated detrusor and mucosal strips. Inhibition of cholinergic receptors significantly decreased force in detrusor and mucosal strips (at higher frequencies). Concurrent inhibition of purinergic and cholinergic receptors nearly abolished evoked responses in detrusor and mucosae. Mucosal SPCs were unaffected by blocking small-conductance Ca(2+)-activated K(+) (SK) channels with apamin and were unchanged by blocking large-conductance Ca(2+)-activated K(+) (BK) channels with iberiotoxin (IbTX), indicating that SK and BK channels play a much smaller role in regulating muscularis mucosae SPCs than they do in regulating detrusor SPCs. Consistent with this, BK channel current density in myocytes from muscularis mucosae was ?20% of that in detrusor myocytes. These findings indicate that the muscularis mucosae in guinea pig represents a second smooth muscle compartment that is physiologically and pharmacologically distinct from the detrusor and may contribute to the overall contractile properties of the urinary bladder.
SUBMITTER: Heppner TJ
PROVIDER: S-EPMC3154705 | biostudies-literature | 2011 Aug
REPOSITORIES: biostudies-literature
ACCESS DATA