Metabolomic profile of hepatitis C virus-infected hepatocytes.
Ontology highlight
ABSTRACT: Hepatitis C virus (HCV) is capable of disrupting different facets of lipid metabolism and lipids have been shown to play a crucial role in the viral life cycle. The aim of this study was to examine the effect HCV infection has on the hepatocyte metabolome. Huh-7.5 cells were infected using virus produced by the HCV J6/JFH1 cell culture system and cells were harvested 24, 48, and 72-hours following infection. Metabolic profiling was performed using a non-targeted multiple platform methodology combining ultrahigh performance liquid chromatography/tandem mass spectrometry (UHPLC/MS/MS(2)) and gas chromatography/mass spectrometry (GC/MS). There was a significant increase in a number of metabolites involved in nucleotide synthesis and RNA replication during early HCV infection. NAD levels were also significantly increased along with several amino acids. A number of lipid metabolic pathways were disrupted by HCV infection, resulting in an increase in cholesterol and sphingolipid levels, altered phospholipid metabolism and a possible disruption in mitochondrial fatty acid transport. Fluctuations in 5'-methylthioadenosine levels were also noted, along with alterations in the glutathione synthesis pathway. These results highlight a number of previously unreported metabolic interactions and give a more in depth insight into the effect HCV has on host cell biochemical processes.
SUBMITTER: Roe B
PROVIDER: S-EPMC3154941 | biostudies-literature |
REPOSITORIES: biostudies-literature
ACCESS DATA