Unknown

Dataset Information

0

DECOD: fast and accurate discriminative DNA motif finding.


ABSTRACT: Motif discovery is now routinely used in high-throughput studies including large-scale sequencing and proteomics. These datasets present new challenges. The first is speed. Many motif discovery methods do not scale well to large datasets. Another issue is identifying discriminative rather than generative motifs. Such discriminative motifs are important for identifying co-factors and for explaining changes in behavior between different conditions.To address these issues we developed a method for DECOnvolved Discriminative motif discovery (DECOD). DECOD uses a k-mer count table and so its running time is independent of the size of the input set. By deconvolving the k-mers DECOD considers context information without using the sequences directly. DECOD outperforms previous methods both in speed and in accuracy when using simulated and real biological benchmark data. We performed new binding experiments for p53 mutants and used DECOD to identify p53 co-factors, suggesting new mechanisms for p53 activation.The source code and binaries for DECOD are available at http://www.sb.cs.cmu.edu/DECOD CONTACT: zivbj@cs.cmu.eduSupplementary data are available at Bioinformatics online.

SUBMITTER: Huggins P 

PROVIDER: S-EPMC3157928 | biostudies-literature | 2011 Sep

REPOSITORIES: biostudies-literature

altmetric image

Publications

DECOD: fast and accurate discriminative DNA motif finding.

Huggins Peter P   Zhong Shan S   Shiff Idit I   Beckerman Rachel R   Laptenko Oleg O   Prives Carol C   Schulz Marcel H MH   Simon Itamar I   Bar-Joseph Ziv Z  

Bioinformatics (Oxford, England) 20110712 17


<h4>Motivation</h4>Motif discovery is now routinely used in high-throughput studies including large-scale sequencing and proteomics. These datasets present new challenges. The first is speed. Many motif discovery methods do not scale well to large datasets. Another issue is identifying discriminative rather than generative motifs. Such discriminative motifs are important for identifying co-factors and for explaining changes in behavior between different conditions.<h4>Results</h4>To address thes  ...[more]

Similar Datasets

| S-EPMC3050600 | biostudies-literature
| S-EPMC2562012 | biostudies-literature
| S-EPMC4428112 | biostudies-literature
| S-EPMC2099490 | biostudies-other
| S-EPMC3726413 | biostudies-literature
| S-EPMC5840810 | biostudies-literature
| S-EPMC2194741 | biostudies-literature
| S-EPMC3957073 | biostudies-literature
| S-EPMC3967114 | biostudies-literature
| S-EPMC3436861 | biostudies-literature